Lateral ventricles might increase due to generalized tissue loss related to brain atrophy. Alternatively, they may expand into areas of tissue loss related to white matter hyperintensities (WMH). We assessed longitudinal associations between lateral ventricle and WMH volumes, accounting for total brain volume, blood pressure, history of stroke, cardiovascular disease, diabetes and smoking at ages 73, 76 and 79, in participants from the Lothian Birth Cohort 1936, including MRI data from all available time points.
View Article and Find Full Text PDFIntroduction: Advanced machine learning methods might help to identify dementia risk from neuroimaging, but their accuracy to date is unclear.
Methods: We systematically reviewed the literature, 2006 to late 2016, for machine learning studies differentiating healthy aging from dementia of various types, assessing study quality, and comparing accuracy at different disease boundaries.
Results: Of 111 relevant studies, most assessed Alzheimer's disease versus healthy controls, using AD Neuroimaging Initiative data, support vector machines, and only T1-weighted sequences.
Preterm infants are at increased risk of alterations in brain structure and connectivity, and subsequent neurocognitive impairment. Breast milk may be more advantageous than formula feed for promoting brain development in infants born at term, but uncertainties remain about its effect on preterm brain development and the optimal nutritional regimen for preterm infants. We test the hypothesis that breast milk exposure is associated with improved markers of brain development and connectivity in preterm infants at term equivalent age.
View Article and Find Full Text PDFElevated serum and cerebrospinal fluid concentrations of S100β, a protein predominantly found in glia, are associated with intracranial injury and neurodegeneration, although concentrations are also influenced by several other factors. The longitudinal association between serum S100β concentrations and brain health in nonpathological aging is unknown. In a large group (baseline N = 593; longitudinal N = 414) of community-dwelling older adults at ages 73 and 76 years, we examined cross-sectional and parallel longitudinal changes between serum S100β and brain MRI parameters: white matter hyperintensities, perivascular space visibility, white matter fractional anisotropy and mean diffusivity (MD), global atrophy, and gray matter volume.
View Article and Find Full Text PDF