Chronic lymphocytic leukemia (CLL) is a B-cell malignancy characterized by profound alterations and defects in the T-cell compartment. This observation has gained renewed interest as T-cell treatment strategies, which are successfully applied in more aggressive B-cell malignancies, have yielded disappointing results in CLL. Despite ongoing efforts to understand and address the observed T-cell defects, the exact mechanisms and nature underlying this dysfunction remain largely unknown.
View Article and Find Full Text PDFRegulatory T (TREG) cells develop via a program orchestrated by the transcription factor forkhead box protein P3 (FOXP3). Maintenance of the TREG cell lineage relies on sustained FOXP3 transcription via a mechanism involving demethylation of cytosine-phosphate-guanine (CpG)-rich elements at conserved non-coding sequences (CNS) in the FOXP3 locus. This cytosine demethylation is catalyzed by the ten-eleven translocation (TET) family of dioxygenases, and it involves a redox reaction that uses iron (Fe) as an essential cofactor.
View Article and Find Full Text PDFVγ9Vδ2 T cells are effector cells with proven antitumor efficacy against a broad range of cancers. This study aimed to assess the antitumor activity and safety of a bispecific antibody directing Vγ9Vδ2 T cells to EGFR-expressing tumors. An EGFR-Vδ2 bispecific T-cell engager (bsTCE) was generated, and its capacity to activate Vγ9Vδ2 T cells and trigger antitumor activity was tested in multiple in vitro, in vivo, and ex vivo models.
View Article and Find Full Text PDFIntroduction: MISTRG mice have been genetically modified to allow development of a human myeloid compartment from engrafted human CD34+ haemopoietic stem cells, making them particularly suited to study the human innate immune system . Here, we characterized the human neutrophil population in these mice to establish a model that can be used to study the biology and contribution in immune processes of these cells .
Methods And Results: We could isolate human bone marrow neutrophils from humanized MISTRG mice and confirmed that all neutrophil maturation stages from promyelocytes (CD11b-CD16-) to end-stage segmented cells (CD11b+CD16+) were present.