Publications by authors named "D Amrane"

We present investigations about the mechanism of action of a previously reported 4-anilino-2-trichloromethylquinazoline antiplasmodial hit-compound (Hit A), which did not share a common mechanism of action with established commercial antimalarials and presented a stage-specific effect on the erythrocytic cycle of P. falciparum at 8 < t < 16 h. The target of Hit A was searched by immobilising the molecule on a solid support via a linker and performing affinity chromatography on a plasmodial lysate.

View Article and Find Full Text PDF

In 2015, we identified gamhepathiopine (M1), a 2--butylaminothieno[3,2-]pyrimidin-4(3)-one antiplasmodial hit targeting all development stages of the human malarial parasite . However, this hit compound suffers from sensitivity to hepatic oxidative metabolism. Herein, we describe the synthesis of 33 new compounds in the 2-aminothieno[3,2-]pyrimidin-4(3)-one series modulated at position 6 of this scaffold.

View Article and Find Full Text PDF

The malaria parasite harbors a relict plastid called the apicoplast. Although not photosynthetic, the apicoplast retains unusual, non-mammalian metabolic pathways that are essential to the parasite, opening up a new perspective for the development of novel antimalarials which display a new mechanism of action. Based on the previous antiplasmodial hit-molecules identified in the 2-trichloromethylquinoxaline series, we report herein a structure-activity relationship (SAR) study at position two of the quinoxaline ring by synthesizing 20 new compounds.

View Article and Find Full Text PDF

From three previously identified antiplasmodial hit compounds (-) and inactive series (), all based on a 2-trichloromethylquinazoline scaffold, we conducted a structure-activity relationship (SAR) study at position four of the quinazoline ring by synthesizing 42 novel derivatives bearing either a carboxamido- or an alkoxy-group, to identify antiplasmodial compounds and to enrich the knowledge about the 2-trichloromethylquinazoline antiplasmodial pharmacophore. All compounds were evaluated in vitro for their cytotoxicity towards the HepG2 cell line and their activity against the multiresistant K1 strain, using doxorubicin, chloroquine and doxycycline as reference drugs. Four hit-compounds (EC K1 ≤ 2 µM and SI ≥ 20) were identified among 4-carboxamido derivatives (, , and ) and two among 4-alkoxy derivatives ( and ).

View Article and Find Full Text PDF