The Fas/Fas ligand (FasL) system is a major apoptosis-regulating pathway with a key role in tumor immune surveillance and metastasis. The expression of Fas/FasL on mammary tumor tissues holds prognostic value for breast cancer (BC) patients. We herein assessed Fas/FasL expression on circulating tumor cells (CTCs) and matched peripheral blood mononuclear cells (PBMCs) from 98 patients with metastatic BC receiving first-line treatment.
View Article and Find Full Text PDFTLR4 and pSTAT3 are key players in cancer inflammation and immune evasion; however, their role in the peripheral blood (PB) is largely unexplored. Herein we evaluated their expression in the circulating tumor cells (CTCs) and peripheral-blood mononuclear cells (PBMCs) of patients with early ( = 99) and metastatic ( = 100) breast cancer (BC). PB samples obtained prior to adjuvant and first-line therapy, were immunofluorescently stained for Cytokeratins/TLR4/pSTAT3/DAPI and analyzed via Ariol microscopy.
View Article and Find Full Text PDFImmune checkpoint inhibitors (ICI), which target immune regulatory pathways to unleash antitumor responses, have revolutionized cancer immunotherapy. Despite the remarkable success of ICI immunotherapy, a significant proportion of patients whose tumors respond to these treatments develop immune-related adverse events (irAE) resembling autoimmune diseases. Although the clinical spectrum of irAEs is well characterized, their successful management remains empiric.
View Article and Find Full Text PDFBackground: To investigate the correlation between circulating tumor cells (CTCs) bearing cancer stem cell (CSC) and epithelial-to-mesenchymal (EMT) phenotypes and the different immunosuppressive cells in peripheral blood of patients with metastatic breast cancer (mBC).
Materials And Methods: Blood was obtained from 38 pre-treated patients with mBC before a new line of treatment. CTC detection and characterization was performed by triple immunofluorescent staining, while Myeloid-derived Suppressor Cells (MDSCs) and T regulatory cells (Tregs) were analyzed by multi-flow cytometry.
The current study aimed at the optimization of circulating tumor cell (CTC) enrichment for downstream protein expression analyses in non-small cell lung cancer (NSCLC) to serve as a tool for the investigation of immune checkpoints in real time. Different enrichment approaches-ficoll density, erythrolysis, their combination with magnetic separation, ISET, and Parsortix-were compared in spiking experiments using the A549, H1975, and SKMES-1 NSCLC cell lines. The most efficient methods were tested in patients ( = 15) receiving immunotherapy targeting programmed cell death-1 (PD-1).
View Article and Find Full Text PDF