J Phys Condens Matter
September 2024
In a recent manuscript, Lawrence Bright(2023175501) reported the resonant inelastic x-ray scattering spectra of UO, as well as UN. Their goal was to identify electronic multiplets associated with a 5configuration with ground state2F5/2. Complete active space self-consistent field with spin-orbit coupling (CASSCF-SOC) predicted that2F5/2transitions should be observable at 190 and 328 meV.
View Article and Find Full Text PDFWe report on the self-part of the Van Hove correlation function, the correlation function describing the dynamics of a single molecule, of water and deuterated water. The correlation function is determined by transforming inelastic scattering spectra of neutrons or x rays over a wide range of momentum transfer Q and energy transfer E to space R and time t. The short-range diffusivity is estimated from the Van Hove correlation function in the framework of the Gaussian approximation.
View Article and Find Full Text PDFFerroic materials on the verge of forming ferroic glasses exhibit heightened functionality that is often attributed to competing long- and short-range correlations. However, the physics underlying these enhancements is not well understood. The NiCoMnIn Heusler alloy is on the edge of forming both spin and strain glasses and exhibits magnetic field-induced shape memory and large magnetocaloric effects, making it a candidate for multicaloric cooling applications.
View Article and Find Full Text PDFMagnetic kagome metals are a promising platform to develop unique quantum transport and optical phenomena caused by the interplay between topological electronic bands, strong correlations, and magnetic order. This interplay may result in exotic quasiparticles that describe the coupled electronic and spin excitations on the frustrated kagome lattice. Here, we observe novel elementary magnetic excitations within the ferromagnetic Mn kagome layers in TbMnSn using inelastic neutron scattering.
View Article and Find Full Text PDF