Publications by authors named "D A Weisblat"

The analysis of how neural circuits function in individuals and change during evolution is simplified by the existence of neurons identified as homologous within and across species. Invertebrates, including leeches, have been used for these purposes in part because their nervous systems comprise a high proportion of identified neurons, but technical limitations make it challenging to assess the full extent to which assumptions of stereotypy hold true. Here, we introduce Minos plasmid-mediated transgenesis as a tool for introducing transgenes into the embryos of the leech Helobdella austinensis (Spiralia; Lophotrochozoa; Annelida; Clitellata; Hirudinida; Glossiphoniidae).

View Article and Find Full Text PDF

Comparisons of multiple metazoan genomes have revealed the existence of ancestral linkage groups (ALGs), genomic scaffolds sharing sets of orthologous genes that have been inherited from ancestral animals for hundreds of millions of years (Simakov et al. 2022; Schultz et al. 2023) These ALGs have persisted across major animal taxa including Cnidaria, Deuterostomia, Ecdysozoa and Spiralia.

View Article and Find Full Text PDF

Background: Slit and Robo are evolutionarily conserved ligand and receptor proteins, respectively, but the number of slit and robo gene paralogs varies across recent bilaterian genomes. Previous studies indicate that this ligand-receptor complex is involved in axon guidance. Given the lack of data regarding Slit/Robo in the Lophotrochozoa compared to Ecdysozoa and Deuterostomia, the present study aims to identify and characterize the expression of Slit/Robo orthologs in leech development.

View Article and Find Full Text PDF

My goals in this chapter are to share my enthusiasm for studying the biology of leeches, to place this work in context by presenting my rationale for studying non-traditional biological models in general, and to sample just three of the questions that intrigue me in leech biology, namely segmentation, genome evolution and neuronal fate specification. I first became excited about the idea of using leeches as a subject of investigation as an undergraduate in 1970 and have been engaged in this work since I arrived at Berkeley as a postdoc in 1976, intending to study leech neurobiology. Both my research interests and the rationale for the work have expanded greatly since then.

View Article and Find Full Text PDF

Cephalization refers to the evolutionary trend towards the concentration of neural tissues, sensory organs, mouth and associated structures at the front end of bilaterian animals. Comprehensive studies on gene expression related to the anterior formation in invertebrate models are currently lacking. In this study, we performed transcriptional profiling on a proboscis-bearing leech () to identify differentially expressed genes (DEGs) in the anterior versus other parts of the body, in particular to find clues as to the development of the proboscis.

View Article and Find Full Text PDF