Publications by authors named "D A Vorobyeva"

Introduction: The mechanisms of the SARS-CoV-2-triggered complex alterations in immune cell activation and production of cytokines in lung tissue remain poorly understood, in part because of the limited use of adequate tissue models that simulate the structure and cell composition of the lung . We developed a novel model of SARS-CoV-2 infection of lung explants, that maintains the intact tissue composition and the viral load for up to 7-10 days. Using this model, we studied cytokine production during SARS-CoV-2 infection.

View Article and Find Full Text PDF

Aim: To identify the features of plasma, platelet hemostasis, and proteomic composition of the blood plasma in patients with acute myocardial infarction (AMI) and healthy volunteers after COVID-19.

Material And Methods: The study included patients with AMI who have recently had COVID-19 (AMI-post-COVID, n=56) and patients with AMI who have not recently had COVID-19 (AMI-control, n=141). Healthy volunteers constituted the control groups and were also divided into control-post-COVID (n=32) and control-control (n=71) groups.

View Article and Find Full Text PDF

Atherosclerotic plaques are sites of chronic inflammation with diverse cell contents and complex immune signaling. Plaque progression and destabilization are driven by the infiltration of immune cells and the cytokines that mediate their interactions. Here, we attempted to compare the systemic cytokine profiles in the blood plasma of patients with atherosclerosis and the local cytokine production, using ex vivo plaque explants from the same patients.

View Article and Find Full Text PDF

An efficient method of accessing new CF-containing spiro-[indene-proline] derivatives has been developed based on a Cp*Rh(III)-catalyzed tandem C-H activation/[3+2]-annulation reaction of 5-aryl-2-(trifluoromethyl)-3,4-dihydro-2-pyrrole-2-carboxylates with alkynes. An important feature of this spiro annulation process is the feasibility of dehydroproline moiety to act as a directing group in the selective activation of the aromatic C-H bond.

View Article and Find Full Text PDF

The molecular mechanisms underlying cardiovascular complications after the SARS-CoV-2 infection remain unknown. The goal of our study was to analyze the features of blood coagulation, platelet aggregation, and plasma proteomics in COVID-19 convalescents with AMI. The study included 66 AMI patients and 58 healthy volunteers.

View Article and Find Full Text PDF