Publications by authors named "D A Stumpf"

"Wavelength selectivity" is an important intrinsic property of diffractive optical elements that offers significant application potential. Here, we focus on tailored wavelength selectivity, the controlled efficiency distribution into different specific diffraction orders for selected wavelengths or wavelength ranges from UV to IR using interlaced double-layer single-relief blazed gratings composed of two materials. Dispersion characteristics of inorganic glasses, layer materials, polymers, nanocomposites, and high-index liquids are taken into account to investigate the impact of especially intersecting or partially overlapping dispersion curves on diffraction efficiency in different orders, providing a guideline for material choice depending on the required optical performance.

View Article and Find Full Text PDF

Hyperchromatic systems are characterized by strong longitudinal chromatic aberrations that are quantitatively described by very small equivalent Abbe numbers. In this contribution, doublet systems are systematically studied with the aim of obtaining extreme values for the equivalent Abbe numbers. Both purely refractive combinations and hybrid systems of diffractive and refractive components are considered.

View Article and Find Full Text PDF

This contribution presents the design and implementation of a compact and robust Echelle-inspired cross-grating spectrometer which is arranged as a double pass setup. This allows use of the employed refractive elements for collimation of the incoming light and, after diffraction at the reflective crossed diffraction grating, for imaging the diffracted light onto the detector. The crossed diffraction grating combines the two dispersive functionalities of a classical Echelle spectrometer in a single element and is therefore formed by a superposition of two blazed linear gratings which are oriented perpendicularly.

View Article and Find Full Text PDF

This paper presents concept, optical design, and the implementation of a novel, to the best of our knowledge, lithographic exposure tool for the fabrication of rotationally symmetric meso- and microscale optical structures using a variable ring-shaped light distribution. Compared to the conventional lithographic technique of direct writing in Cartesian coordinates, which is intrinsically suboptimal for the fabrication of rotationally symmetric optical structures, this approach allows for fast exposure and avoids disturbing stitching effects. The diameter of the exposure ring varies between 1.

View Article and Find Full Text PDF

Reversibly switchable fluorescent proteins (RSFPs) can be repeatedly transferred between a fluorescent on- and a nonfluorescent off-state by illumination with light of different wavelengths. Negative switching RSFPs are switched from the on- to the off-state with the same wavelength that also excites fluorescence. Positive switching RSFPs have a reversed light response, where the fluorescence excitation wavelength induces the transition from the off- to the on-state.

View Article and Find Full Text PDF