J Neurosci Methods
August 2023
Background: Despite the prevalent use of the ex vivo brain slice preparation in neurophysiology research, a reliable method for judging tissue viability - and thus suitability of a slice for inclusion in an experiment - is lacking. The utility of indirect electrophysiological measures of tissue health is model-specific and needs to be used cautiously. In this study, we verify a more direct test of slice viability, based on tissue oxygen consumption rate.
View Article and Find Full Text PDFAt the cellular level, all biological function relies on enzymes to provide catalytic acceleration of essential biochemical processes driving cellular metabolism. The enzyme is presumed to lower the activation energy barrier separating reactants from products, but the precise mechanism remains unresolved. Here we examine the temperature dependence of the enzyme-catalyzed dissociation of p-nitrophenyl-α-D-glucopyranoside (pNPG), a chromogenic analog for maltose, isomaltose, and sucrose disaccharide sugars, into p-nitrophenol (pNP) and glucose (monosaccharide).
View Article and Find Full Text PDFTo investigate the impact of experimental interventions on living biological tissue, ex vivo rodent brain slices are often used as a more controllable alternative to a live animal model. However, for meaningful results, the biological sample must be known to be healthy and viable. One of the gold-standard approaches to identifying tissue viability status is to measure the rate of tissue oxygen consumption under specific controlled conditions.
View Article and Find Full Text PDFThe novel coronavirus SARS-CoV-2, responsible for the present COVID-19 global pandemic, is known to bind to the angiotensin converting enzyme-2 (ACE2) receptor in human cells. A possible treatment of COVID-19 could involve blocking ACE2 and/or disabling the spike protein on the virus. Here, molecular dynamics simulations were performed to test the binding affinities of nine candidate compounds.
View Article and Find Full Text PDFWe present a detailed analysis of the Hindriks and van Putten thalamocortical mean-field model for propofol anesthesia [NeuroImage 60(23), 2012]. The Hindriks and van Putten (HvP) model predicts increases in delta and alpha power for moderate (up to 130%) prolongation of GABA inhibitory response, corresponding to light anesthetic sedation. Our analysis reveals that, for deeper anesthetic effect, the model exhibits an unexpected abrupt jump in cortical activity from a low-firing state to an extremely high-firing stable state (∼250 spikes/s), and remains locked there even at GABA prolongations as high as 300% which would be expected to induce full comatose suppression of all firing activity.
View Article and Find Full Text PDF