Publications by authors named "D A Stagg"

The progression of metabolic-dysfunction-associated steatotic liver disease (MASLD) to metabolic-dysfunction-associated steatohepatitis (MASH) involves complex alterations in both liver-autonomous and systemic metabolism that influence the liver's balance of fat accretion and disposal. Here, we quantify the relative contribution of hepatic oxidative pathways to liver injury in MASLD-MASH. Using NMR spectroscopy, UHPLC-MS, and GC-MS, we performed stable-isotope tracing and formal flux modeling to quantify hepatic oxidative fluxes in humans across the spectrum of MASLD-MASH, and in mouse models of impaired ketogenesis.

View Article and Find Full Text PDF

Therapeutic interventions targeting hepatic lipid metabolism in metabolic dysfunction-associated steatotic liver disease (MASLD) and steatohepatitis (MASH) remain elusive. Using mass spectrometry-based stable isotope tracing and shotgun lipidomics, we established a novel link between ketogenesis and MASLD pathophysiology. Our findings show that mouse liver and primary hepatocytes consume ketone bodies to support fatty acid (FA) biosynthesis via both de novo lipogenesis (DNL) and FA elongation.

View Article and Find Full Text PDF

Acute exercise increases liver gluconeogenesis to supply glucose to working muscles. Concurrently, elevated liver lipid breakdown fuels the high energetic cost of gluconeogenesis. This functional coupling between liver gluconeogenesis and lipid oxidation has been proposed to underlie the ability of regular exercise to enhance liver mitochondrial oxidative metabolism and decrease liver steatosis in individuals with nonalcoholic fatty liver disease.

View Article and Find Full Text PDF

BackgroundResponses of the metabolome to acute aerobic exercise may predict maximum oxygen consumption (VO2max) and longer-term outcomes, including the development of diabetes and its complications.MethodsSerum samples were collected from overweight/obese trained (OWT) and normal-weight trained (NWT) runners prior to and immediately after a supervised 90-minute treadmill run at 60% VO2max (NWT = 14, OWT = 11) in a cross-sectional study. We applied a liquid chromatography high-resolution-mass spectrometry-based untargeted metabolomics platform to evaluate the effect of acute aerobic exercise on the serum metabolome.

View Article and Find Full Text PDF

Objective: Throughout the last decade, interest has intensified in intermittent fasting, ketogenic diets, and exogenous ketone therapies as prospective health-promoting, therapeutic, and performance-enhancing agents. However, the regulatory roles of ketogenesis and ketone metabolism on liver homeostasis remain unclear. Therefore, we sought to develop a better understanding of the metabolic consequences of hepatic ketone body metabolism by focusing on the redox-dependent interconversion of acetoacetate (AcAc) and D-β-hydroxybutyrate (D-βOHB).

View Article and Find Full Text PDF