Publications by authors named "D A Saloner"

Purpose: To develop and validate a 3D turbo spin-echo (TSE)-compatible approach to enhancing black-blood (BB) effects while preserving T weighting and overall SNR.

Methods: Following the excitation RF pulse, a 180° RF pulse sandwiched by a pair of flow-sensitive dephasing (FSD) gradient pulses in the phase- (y) and partition-encoding (z) directions, respectively, is added. The polarity of FSD gradients in z direction is toggled every TR, achieving an interleaved FSD (iFSD) configuration in y-z plane.

View Article and Find Full Text PDF

Ascending thoracic aortic aneurysms (aTAAs) can lead to life-threatening dissection and rupture. Recent studies have highlighted aTAA mechanical properties as relevant factors associated with progression. The aim of this study was to quantify in vivo aortic wall stretch in healthy participants and aTAA patients using displacement encoding with stimulated echoes (DENSE) magnetic resonance imaging.

View Article and Find Full Text PDF

Objectives: Diameter-based risk stratification for elective repair of ascending aortic aneurysm fails to prevent type A dissection in many patients. Aneurysm wall stresses may contribute to risk prediction; however, rates of wall stress change over time are poorly understood. Our objective was to examine aneurysm wall stress changes over 3-5 years and subsequent all-cause mortality.

View Article and Find Full Text PDF

This study aimed to develop a rapid, 1 mm isotropic resolution, whole-brain MRI technique for automatic lesion segmentation and multi-parametric mapping without using contrast by continuously applying balanced steady-state free precession with inversion pulses throughout incomplete inversion recovery in a single 6 min scan. Modified k-means clustering was performed for automatic brain tissue and lesion segmentation using distinct signal evolutions that contained mixed T1/T2/magnetization transfer properties. Multi-compartment modeling was used to derive quantitative multi-parametric maps for tissue characterization.

View Article and Find Full Text PDF

Objectives: Current diameter-based guidelines for ascending thoracic aortic aneurysms (aTAA) do not consistently predict risk of dissection/rupture. ATAA wall stresses may enhance risk stratification independent of diameter. The relation of wall stresses and diameter indexed to height and body surface area (BSA) is unknown.

View Article and Find Full Text PDF