We report the measurement of impulsive stimulated x-ray Raman scattering in neutral liquid water. An attosecond pulse drives the excitations of an electronic wavepacket in water molecules. The process comprises two steps: a transition to core-excited states near the oxygen atoms accompanied by transition to valence-excited states.
View Article and Find Full Text PDFX-ray free-electron lasers are sources of coherent, high-intensity X-rays with numerous applications in ultra-fast measurements and dynamic structural imaging. Due to the stochastic nature of the self-amplified spontaneous emission process and the difficulty in controlling injection of electrons, output pulses exhibit significant noise and limited temporal coherence. Standard measurement techniques used for characterizing two-coloured X-ray pulses are challenging, as they are either invasive or diagnostically expensive.
View Article and Find Full Text PDFAttosecond-pump/attosecond-probe experiments have long been sought as the most straightforward method for observing electron dynamics in real time. Although there has been much success with overlapped near-infrared femtosecond and extreme ultraviolet attosecond pulses combined with theory, true attosecond-pump/attosecond-probe experiments have been limited. We used a synchronized attosecond x-ray pulse pair from an x-ray free-electron laser to study the electronic response to valence ionization in liquid water through all x-ray attosecond transient absorption spectroscopy (AX-ATAS).
View Article and Find Full Text PDFThis research paper aimed to find endemic bacteria from the cattle production system to control the growth of mastitis pathogens. Bacteria were isolated from compost barn sawdust of two dairy cattle systems and later tested to verify their ability to control the growth of Staphylococcus aureus isolates obtained from cattle with mastitis. Bacterial isolates from these systems were tested to verify biocontrol capacity using the double-layer method.
View Article and Find Full Text PDF