Publications by authors named "D A R Dalvit"

Metasurfaces have recently entered the realm of quantum photonics, enabling manipulation of quantum light using a compact nanophotonic platform. Realizing the full potential of metasurfaces at the deepest quantum level requires the ability to tune coherent light-matter interactions continuously in space and time. Here, we introduce the concept of space-time quantum metasurfaces for arbitrary control of the spectral, spatial, and spin properties of nonclassical light using a compact photonic platform.

View Article and Find Full Text PDF

The near-field electromagnetic interaction between nanoscale objects produces enhanced radiative heat transfer that can greatly surpass the limits established by far-field blackbody radiation. Here, we present a theoretical framework to describe the temporal dynamics of the radiative heat transfer in ensembles of nanostructures, which is based on the use of an eigenmode expansion of the equations that govern this process. Using this formalism, we identify the fundamental principles that determine the thermalization of collections of nanostructures, revealing general but often unintuitive dynamics.

View Article and Find Full Text PDF

The ability to harness light-matter interactions at the few-photon level plays a pivotal role in quantum technologies. Single photons-the most elementary states of light-can be generated on demand in atomic and solid state emitters. Two-photon states are also key quantum assets, but achieving them in individual emitters is challenging because their generation rate is much slower than competing one-photon processes.

View Article and Find Full Text PDF

Emerging photonic functionalities are mostly governed by the fundamental principle of Lorentz reciprocity. Lifting the constraints imposed by this principle could circumvent deleterious effects that limit the performance of photonic systems. Most efforts to date have been limited to waveguide platforms.

View Article and Find Full Text PDF

Ultra-lightweight deployable antennas with high-gain are pivotal communication components for small satellites, which are intrinsically constrained in size, weight, and power. In this work, we design and demonstrate metasurface-based ultra-lightweight flat off-axis reflectarrays for microwave beam collimation and focusing, similar to a parabolic dish-antenna. Our ultra-thin reflectarrays employ resonators of variable sizes to cover the full 2π phase range, and are arranged on the metasurface to realize a two-dimensional parabolic focusing phase distribution.

View Article and Find Full Text PDF