The SLC (solute carrier) superfamily mediates the passive transport of small molecules across apical and basolateral cell membranes in nearly all tissues. In this paper, we employ bond-graph approaches to develop models of SLC transporters that conserve mass, charge, and energy, respectively, and can be parameterized for a specific cell and tissue type for which the experimental kinetic data are available. We show how analytic expressions that preserve thermodynamic consistency can be derived for a representative four- or six-state model, given reasonable assumptions associated with steady-state flux conditions.
View Article and Find Full Text PDFInterest in the concept of a virtual human model that can encompass human physiology and anatomy on a biophysical (mechanistic) basis, and can assist with the clinical diagnosis and treatment of disease, appears to be growing rapidly around the globe. When such models are personalised and coupled with continual diagnostic measurements, they are called 'digital twins'. We argue here that the most useful form of virtual human model will be one that is constrained by the laws of physics, contains a comprehensive knowledge graph of all human physiology and anatomy, is multiscale in the sense of linking systems physiology down to protein function, and can to some extent be personalized and linked directly with clinical records.
View Article and Find Full Text PDF