We report on an all-fiber setup capable of generating complex intensity patterns using interference of few guided modes. Comprised by a few-mode fiber (FMF) spliced to a multimodal interference (MMI) fiber device, the setup allows for obtaining different output patterns upon adjusting the phases and intensities of the modes propagating in the FMF. We analyze the output patterns obtained when exciting two family modes in the MMI device using different phase and intensity conditions for the FMF modal base.
View Article and Find Full Text PDFA ratiometric fiber optic temperature sensor based on a highly coupled seven-core fiber (SCF) is proposed and experimentally demonstrated. A theoretical analysis of the SCF's sinusoidal spectral response in transmission configuration is presented. The proposed sensor comprises two SCF devices exhibiting anti-phase transmission spectra.
View Article and Find Full Text PDFIn this Letter, we report a novel, to the best of our knowledge, and simple approach for passive quadrature-phase demodulation of relatively long multiplexed interferometers based on two-channel coherence correlation reflectometry. Two-wavelength channels are generated using a single unmodulated CW-DFB diode laser and an acousto-optic frequency shifter. The introduced frequency shift determines the optical lengths of the interferometers.
View Article and Find Full Text PDFIn this paper, a ratiometric approach to sensing temperature variations is shown using specialty fiber optic devices. We analyzed the transmission response of cascaded segments of multicore fibers (MCFs), and dissimilar lengths were found to generate an adequate scheme for ratiometric operation. The perturbation of optical parameters in the MCFs translates to a rich spectral behavior in which some peaks increase their intensity while others decrease their intensity.
View Article and Find Full Text PDFWe demonstrate optical fiber sensors based on highly coupled multicore fibers operating with the optical Vernier effect. The sensors are constructed using a simple device incorporating single-mode fibers (SMFs) and a segment of a multicore fiber. In particular, we evaluated the performance of a sensor based on a seven-core fiber (SCF) spliced at both ends to conventional SMFs, yielding a versatile arrangement for realizing Vernier-based fiber sensors.
View Article and Find Full Text PDF