Publications by authors named "D A M Heijnen"

Cancer vaccines are a promising strategy to increase tumor-specific immune responses in patients who do not adequately respond to checkpoint inhibitors. Cancer vaccines that contain patient-specific tumor antigens are most effective but also necessitate the production of patient-specific vaccines. This study aims to develop a versatile cancer vaccine format in which patient-specific tumor antigens can be site-specifically conjugated by a proximity-based Sortase A (SrtA)-mediated ligation (PBSL) approach to antibodies that specifically bind to antigen-presenting cells to stimulate immune responses.

View Article and Find Full Text PDF

Cancer vaccines aim to efficiently prime cytotoxic CD8 T cell responses which can be achieved by vaccine targeting to dendritic cells. CD169 macrophages have been shown to transfer antigen to dendritic cells and could act as an alternative target for cancer vaccines. Here, we evaluated liposomes containing the CD169/Siglec-1 binding ligand, ganglioside GM3, and the non-binding ligand, ganglioside GM1, for their capacity to target antigens to CD169 macrophages and to induce immune responses.

View Article and Find Full Text PDF

The synthesis and characterization of a series of light-driven third-generation molecular motors featuring various structural modifications at the central aromatic core are presented. We explore a number of substitution patterns, such as 1,2-dimethoxybenzene, naphthyl, 1,2-dichlorobenzene, 1,1':2',1″-terphenyl, 4,4″-dimethoxy-1,1':2',1″-terphenyl, and 1,2-dicarbomethoxybenzene, considered essential for designing future responsive systems. In many cases, the synthetic routes for both synthetic intermediates and motors reported here are modular, allowing for their post-functionalization.

View Article and Find Full Text PDF

The coupling of organolithium reagents, including strongly hindered examples, at cryogenic temperatures (as low as -78 °C) has been achieved with high-reactivity Pd-NHC catalysts. A temperature-dependent chemoselectivity trigger has been developed for the selective coupling of aryl bromides in the presence of chlorides. Building on this, a one-pot, sequential coupling strategy is presented for the rapid construction of advanced building blocks.

View Article and Find Full Text PDF

The synthesis of functionalized (benz)aldehydes, via a two-step, one-pot procedure, is presented. The method employs a stable aluminum hemiaminal as a tetrahedral intermediate, protecting a latent aldehyde, making it suitable for subsequent cross-coupling with (strong nucleophilic) organometallic reagents, leading to a variety of alkyl and aryl substituted benzaldehydes. This very fast methodology also facilitates the effective synthesis of a C radiolabeled aldehyde.

View Article and Find Full Text PDF