Publications by authors named "D A Lytle"

Hot water systems are the most frequent environment associated with the prevalence and growth of opportunistic premise plumbing pathogens (OPPPs). Previous studies identified water heaters as a source of waterborne diseases and concluded that design variables may contribute to their prevalence. A multifaceted approach was used to investigate the vertical stratification of the microbiome and selected OPPPs in an electric water heater tank connected to a home plumbing system simulator.

View Article and Find Full Text PDF

Thirty-one drinking water storage tank sediment samples were collected in 13 states, 17 distribution systems, and 29 tanks over the course of 4 years. Sediment samples were characterized for elemental composition and physical properties, which were found to be inconsistent both between samples of the same distribution system and across geographical regions. Differences between samples from the same tank also indicated spatial differences in sediment composition within storage tanks.

View Article and Find Full Text PDF

Orthophosphate (PO) is a commonly used corrosion control treatment to reduce lead (Pb) concentrations in drinking water. PO reduces Pb concentrations by forming relatively insoluble lead phosphate (Pb-PO) minerals. In some cases, however, Pb-PO minerals have been observed to form nanoparticles, and if suspended in water, these nanoparticles can be mobile and reach consumer taps.

View Article and Find Full Text PDF

Ductile iron and copper coupons were aged 137-189 days and 2 days, respectively, with 2 mg Cl L monochloramine under four water chemistries (pH 7 or 9 and 0 or 3 mg L orthophosphate). Subsequently, microelectrode profiles of monochloramine concentration, oxygen concentration, and pH were measured from the bulk water to near the coupon reactive surface, allowing estimation of flux and apparent surface reaction rate constants for monochloramine and oxygen. Both metals showed similar trends with orthophosphate where orthophosphate decreased metal reactivity with monochloramine (pH 9) and oxygen (pH 7).

View Article and Find Full Text PDF

Chloraminated drinking water systems commonly use free chlorine conversions (FCCs) to prevent or control nitrification, but unintended water quality changes may occur, including increased disinfection by-product and metal concentrations. This study evaluated water quality in a chloraminated drinking water system and residential locations before, during, and after their annual, planned FCC. Water quality alternated between relatively consistent and variable periods when switching disinfectants.

View Article and Find Full Text PDF