Parkinson's disease (PD) is a progressive neurodegenerative disorder that affects over 1% of population over age 60. It is defined by motor and nonmotor symptoms including a spectrum of cognitive impairments known as Parkinson's disease dementia (PDD). Currently, the only US Food and Drug Administration-approved treatment for PDD is rivastigmine, which inhibits acetylcholinesterase and butyrylcholinesterase increasing the level of acetylcholine in the brain.
View Article and Find Full Text PDFHyperactivation of the hypothalamic-pituitary-adrenal (HPA) axis response can result in anxiety and other neuropsychiatric disorders and effective therapeutics are needed to mitigate this maladaptive response. Here we examined the effects of Teneurin C-terminal Associated Peptide (TCAP)-1, a peptide known to inhibit corticotropin releasing factor (CRF)-mediated stress, on the physiological expression of stress, and whether the effects of TCAP-1 were dependent on the route of administration. We first examined whether subcutaneous administration of TCAP-1 influenced tube restraint stress-induced corticosterone (CORT) increases in both male mice and rats.
View Article and Find Full Text PDFRationale: Corticotropin-releasing factor (CRF), the apical stress-inducing hormone, exacerbates stress and addictive behaviors. TCAP-1 is a peptide that directly inhibits both CRF-mediated stress and addiction-related behaviors; however, the direct action of TCAP-1 on morphine withdrawal-associated behaviors has not previously been examined.
Objective: To determine whether TCAP-1 administration attenuates behavioral and physiological consequences of morphine withdrawal in mice.
Dysregulation of the kynurenine pathway (KP) is believed to play a significant role in neurodegenerative and cognitive disorders. While some evidence links the KP to myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS), further studies are needed to clarify the overall picture of how inflammation-driven KP disturbances may contribute to symptomology in ME/CFS. Here, we report that plasma levels of most bioactive KP metabolites differed significantly between ME/CFS patients and healthy controls in a manner consistent with their known contribution to symptomology in other neurological disorders.
View Article and Find Full Text PDFTeneurin C-terminal associated peptide (TCAP) is an ancient bioactive peptide that is highly conserved in metazoans. TCAP administration reduces cellular and behavioural stress in vertebrate and urochordate models, yet despite numerous studies in higher animals, there is limited knowledge of its role in invertebrates. In particular, there are no studies on TCAP's effects on the heart of any metazoan, which is a critical organ in the stress response.
View Article and Find Full Text PDF