The predicted implosion performance of deuterium-tritium fuel capsules in indirect-drive inertial confinement fusion experiments relies on precise calculations of the x-ray drive in laser-heated cavities (hohlraums). This requires accurate, spectrally dependent simulations of laser to x-ray conversion efficiencies and x-ray absorption losses to the hohlraum wall. A set of National Ignition Facility experiments have identified a cause for the long-standing hohlraum "drive deficit" as the overprediction of gold emission at ∼2.
View Article and Find Full Text PDFPhys Rev Lett
February 2024
K-shell x-ray emission spectroscopy is a standard tool used to diagnose the plasma conditions created in high-energy-density physics experiments. In the simplest approach, the emissivity-weighted average temperature of the plasma can be extracted by fitting an emission spectrum to a single temperature condition. It is known, however, that a range of plasma conditions can contribute to the measured spectra due to a combination of the evolution of the sample and spatial gradients.
View Article and Find Full Text PDFEvolution of the hot spot plasma conditions was measured using high-resolution x-ray spectroscopy at the National Ignition Facility. The capsules were filled with DD gas with trace levels of Kr and had either a high-density-carbon (HDC) ablator or a tungsten (W)-doped HDC ablator. Time-resolved measurement of the Kr Heβ spectra, absolutely calibrated by a simultaneous time-integrated measurement, allows inference of the electron density and temperature through observing Stark broadening and the relative intensities of dielectronic satellites.
View Article and Find Full Text PDF