Detection of RNA targets is typically achieved through RT-qPCR or RNAseq. RT-qPCR is rapid but limited in number and complexity of targets detected, while RNAseq is high-throughput but takes multiple days. We demonstrate simultaneous amplification and detection of 28 distinct RNA targets from a single unsplit purified RNA sample in under 40 minutes using our convective array PCR (caPCR) technology.
View Article and Find Full Text PDFThis work demonstrates a simple dual-well device which enables spatially isolated solutions to undergo complementary redox reactions. The device functions by the ambipolar transport of charge carriers between two spatially isolated poly(dimethylsiloxane) (PDMS) microwells through an underlying multi-walled carbon nanotube (MWCNT) mat. This MWCNT mat enables charge carriers, produced from the decomposition of an analyte in one solution, to drive a redox reaction in a spatially isolated second colorimetric read-out solution via a potential difference between the wells.
View Article and Find Full Text PDFAssays for the molecular detection of nucleic acids are typically constrained by the level of multiplexing (this is the case for the quantitative polymerase chain reaction (qPCR) and for isothermal amplification), turnaround times (as with microarrays and next-generation sequencing), quantification accuracy (isothermal amplification, microarrays and nanopore sequencing) or specificity for single-nucleotide differences (microarrays and nanopore sequencing). Here we show that a portable and battery-powered PCR assay performed in a toroidal convection chamber housing a microarray of fluorescently quenched oligonucleotide probes allows for the rapid and sensitive quantification of multiple DNA targets with single-nucleotide discrimination. The assay offers a limit of detection of 10 DNA copies within 30 min of turnaround time and a dynamic range spanning 4 orders of magnitude of DNA concentration, and we show its performance by detecting 20 genomic loci and 30 single-nucleotide polymorphisms in human genomic DNA samples, and 15 bacterial species in clinical isolates.
View Article and Find Full Text PDFConcentrations of different nucleic acid species in biological samples span many orders of magnitude. A real-time polymerase chain reaction maps the concentration of a target nucleic acid sequence log-linearly into cycle threshold to enable quantitation with a wide dynamic range but suffers from enzymatic biases. Here, we present a general design for constructing hybridization probe sets with highly log-linear response curves to enable accurate enzyme-free quantitation across large ranges (more than 6 logs) of target DNA concentrations.
View Article and Find Full Text PDFNucleic acid sequence variations have been implicated in many diseases, and reliable detection and quantitation of DNA/RNA biomarkers can inform effective therapeutic action, enabling precision medicine. Nucleic acid analysis technologies being translated into the clinic can broadly be classified into hybridization, PCR, and sequencing, as well as their combinations. Here we review the molecular mechanisms of popular commercial assays, and their progress in translation into in vitro diagnostics.
View Article and Find Full Text PDF