Publications by authors named "D A Isenegger"

Background: Fructans are water-soluble carbohydrates that accumulate in wheat and are thought to contribute to a pool of stored carbon reserves used in grain filling and tolerance to abiotic stress.

Results: In this study, transgenic wheat plants were engineered to overexpress a fusion of two fructan biosynthesis pathway genes, wheat sucrose: sucrose 1-fructosyltransferase (Ta1SST) and wheat sucrose: fructan 6-fructosyltransferase (Ta6SFT), regulated by a wheat ribulose-1,5-bisphosphate carboxylase/oxygenase small subunit (TaRbcS) gene promoter. We have shown that T4 generation transgene-homozygous single-copy events accumulated more fructan polymers in leaf, stem and grain when compared in the same tissues from transgene null lines.

View Article and Find Full Text PDF

Safflower ( L.) is an ancient oilseed crop of interest due to its diversity of end-use industrial and food products. Proteomic and metabolomic profiling of its organs during seed development, which can provide further insights on seed quality attributes to assist in variety and product development, has not yet been undertaken.

View Article and Find Full Text PDF

Genomic resources for grasses, especially warm-season grasses are limited despite their commercial and environmental importance. Here, we report the first annotated draft whole genome sequence for diploid Rhodes grass (), a tropical C4 species. Generated using long read nanopore sequencing and assembled using the Flye software package, the assembled genome is 603 Mbp in size and comprises 5,233 fragments that were annotated using the GenSas pipeline.

View Article and Find Full Text PDF

Efforts to increase genetic gains in breeding programs of flowering plants depend on making genetic crosses. Time to flowering, which can take months to decades depending on the species, can be a limiting factor in such breeding programs. It has been proposed that the rate of genetic gain can be increased by reducing the time between generations by circumventing flowering through the induction of meiosis.

View Article and Find Full Text PDF

Delaying leaf senescence in plants, especially under water stress conditions, can help to maintain the remobilization of stored nutrients in source-sink relationships, thus leading to improved crop yields. Leaf senescence can be delayed by plant hormones such as cytokinin. Here, the gene, encoding a cytokinin biosynthesis enzyme, driven by a modified promoter was transformed into wheat.

View Article and Find Full Text PDF