Publications by authors named "D A IAKOVLEV"

This work provides a procedure and database for obtaining the vibrational frequency scale factors that align quantum chemically computed harmonic frequencies with experimental vibrational spectroscopic data. The database comprises 441 molecules of various sizes, from diatomics to the buckminsterfullerene C. We provide scale factors for 27 dispersion-corrected methods, 24 of which are DF-Dn/B with DF=BLYP, PBE, B3LYP, PBE0, Dn=D3(BJ), D4, and B=6-31G, def2-SVP, def2-TZVP, and three of them are the 3c-family composite methods (HF-3c, PBEh-3c, and rSCAN-3c).

View Article and Find Full Text PDF

The human N-glycosylases SMUG1 and MBD4 catalyze the removal of uracil residues from DNA resulting from cytosine deamination or replication errors. For polymorphic variants of SMUG1 (G90C, P240H, N244S, N248Y) and the MBD4^(cat) catalytic domain (S470L, G507S, R512W, H557D), the structures of enzyme-substrate complexes were obtained by molecular dynamic simulation. It was experimentally found that the SNP variants of SMUG1, N244S and N248Y, had increased catalytic activity compared to the wild-type enzyme, probably due to the acceleration of the dissociation of the enzyme-product complex and an increase in the enzyme turnover rate.

View Article and Find Full Text PDF

Human uracil-DNA glycosylase SMUG1 removes uracil residues and some other noncanonical or damaged bases from DNA. Despite the functional importance of this enzyme, its X-ray structure is still unavailable. Previously, we performed homology modeling of human SMUG1 structure and suggested the roles of some amino acid residues in the recognition of damaged nucleotides and their removal from DNA.

View Article and Find Full Text PDF

Damaged DNA bases are removed by the base excision repair (BER) mechanism. This enzymatic process begins with the action of one of DNA glycosylases, which recognize damaged DNA bases and remove them by hydrolyzing N-glycosidic bonds with the formation of apurinic/apyrimidinic (AP) sites. Apurinic/apyrimidinic endonuclease 1 (APE1) hydrolyzes the phosphodiester bond on the 5'-side of the AP site with generation of the single-strand DNA break.

View Article and Find Full Text PDF

Human SMUG1 (hSMUG1) hydrolyzes the -glycosidic bond of uracil and some uracil lesions formed in the course of epigenetic regulation. Despite the functional importance of hSMUG1 in the DNA repair pathway, the damage recognition mechanism has been elusive to date. In the present study, our objective was to build a model structure of the enzyme-DNA complex of wild-type hSMUG1 and several hSMUG1 mutants containing substitution F98W, H239A, or R243A.

View Article and Find Full Text PDF