Large-scale disturbances generated by the Sun's dynamics first propagate through the heliosphere, influence the heliosphere's outer boundaries, and then traverse and modify the very local interstellar medium (VLISM). The existence of shocks in the VLISM was initially suggested by Voyager observations of the 2-3 kHz radio emissions in the heliosphere. A couple of decades later, both Voyagers crossed the definitive edge of our heliosphere and became the first ever spacecraft to sample interstellar space.
View Article and Find Full Text PDFIn 2012, Voyager 1 became the first in situ probe of the very local interstellar medium. The Voyager 1 Plasma Wave System has given point estimates of the plasma density spanning about 30 au of interstellar space, revealing a large-scale density gradient and turbulence outside the heliopause. Previous studies of the plasma density relied on the detection of discrete plasma oscillation events triggered ahead of shocks propagating outwards from the Sun and used to infer the plasma frequency and hence density.
View Article and Find Full Text PDFIntense electromagnetic impulses induced by Jupiter's lightning have been recognised to produce both low-frequency dispersed whistler emissions and non-dispersed radio pulses. Here we report the discovery of electromagnetic pulses associated with Jovian lightning. Detected by the Juno Waves instrument during its polar perijove passes, the dispersed millisecond pulses called Jupiter dispersed pulses (JDPs) provide evidence of low density holes in Jupiter's ionosphere.
View Article and Find Full Text PDFUnderstanding of wave environments is critical for the understanding of how particles are accelerated and lost in space. This study shows that in the vicinity of Europa and Ganymede, that respectively have induced and internal magnetic fields, chorus wave power is significantly increased. The observed enhancements are persistent and exceed median values of wave activity by up to 6 orders of magnitude for Ganymede.
View Article and Find Full Text PDFLightning has been detected on Jupiter by all visiting spacecraft through night-side optical imaging and whistler (lightning-generated radio waves) signatures. Jovian lightning is thought to be generated in the mixed-phase (liquid-ice) region of convective water clouds through a charge-separation process between condensed liquid water and water-ice particles, similar to that of terrestrial (cloud-to-cloud) lightning. Unlike terrestrial lightning, which emits broadly over the radio spectrum up to gigahertz frequencies, lightning on Jupiter has been detected only at kilohertz frequencies, despite a search for signals in the megahertz range .
View Article and Find Full Text PDF