Publications by authors named "D A Gerlach"

KRASG12C selective inhibitors, such as sotorasib and adagrasib, have raised hopes of targeting other KRAS mutant alleles in cancer patients. We report that KRAS wild-type amplified tumor models are sensitive to treatment with the small molecule KRAS inhibitors BI-2493 and BI-2865. These pan-KRAS inhibitors directly target the "OFF" state of KRAS and result in potent anti-tumor activity in pre-clinical models of cancers driven by KRAS mutant proteins.

View Article and Find Full Text PDF
Article Synopsis
  • * Research shows that NF1-null melanomas rely on RAS for growth, and using a MEK inhibitor like avutometinib alone can increase RAS signaling instead of decreasing it.
  • * Combining MEK inhibition with SOS1 suppression effectively reduces RAS activity, induces cancer cell death, and suppresses tumor growth, highlighting a new strategy for treating NF1-mutant melanoma.
View Article and Find Full Text PDF

The clinical effectiveness of KRASG12C inhibitors (G12Ci) is limited both by intrinsic and acquired resistance, necessitating the development of combination approaches. Here, we identified targeting proximal receptor tyrosine kinase signaling using the SOS1 inhibitor (SOS1i) BI-3406 as a strategy to improve responses to G12Ci treatment. SOS1i enhanced the efficacy of G12Ci and limited rebound receptor tyrosine kinase/ERK signaling to overcome intrinsic/adaptive resistance, but this effect was modulated by SOS2 protein levels.

View Article and Find Full Text PDF

A novel oxygen evolution reaction (OER) electrocatalyst was prepared by a synthesis strategy consisting of the solvothermal growth of NiS nanostructures on Ni foam, followed by hydrothermal incorporation of Fe species (Fe-NiS/Ni foam). This electrocatalyst displayed a low OER overpotential of 230 mV at 100 mA·cm, a low Tafel slope of 43 mV·dec, and constant performance at an industrially relevant current density (500 mA·cm) over 100 h in a 1.0 M KOH electrolyte, despite a minor loss of Fe in the process.

View Article and Find Full Text PDF

Long-duration spaceflight is associated with pathophysiological changes in the intracranial compartment hypothetically linked to microgravity-induced headward fluid shift. This study aimed to determine whether daily artificial gravity (AG) sessions can mitigate these effects, supporting its application as a countermeasure to spaceflight. Twenty-four healthy adult volunteers (16 men) were exposed to 60 days of 6° head-down tilt bed rest (HDTBR) as a ground-based analog of chronic headward fluid shift.

View Article and Find Full Text PDF