Purpose: Auditory perceptual and cognitive tasks can be useful as a long-term goal in guiding rehabilitation and intervention strategies in audiology clinics that mostly operate at a faster pace and on strict timelines. The rationale of this study was to assess test-retest reliability of an abbreviated test battery and evaluate age-related auditory perceptual and cognitive effects on these measures.
Method: Experiment 1 evaluated the test-retest repeatability of an abbreviated test battery and its use in an adverse listening environment.
Background: Egg-based inactivated quadrivalent seasonal influenza vaccine (eIIV4), cell culture-based inactivated quadrivalent seasonal influenza vaccine (ccIIV4), and recombinant haemagglutinin (HA)-based quadrivalent seasonal influenza vaccine (RIV4) have been licensed for use in the USA. In this study, we used antigen-specific serum proteomics analysis to assess how the molecular composition and qualities of the serological antibody repertoires differ after seasonal influenza immunisation by each of the three vaccines and how different vaccination platforms affect the HA binding affinity and breadth of the serum antibodies that comprise the polyclonal response.
Methods: In this comparative, prospective, observational cohort study, we included female US health-care personnel (mean age 47·6 years [SD 8]) who received a single dose of RIV4, eIIV4, or ccIIV4 during the 2018-19 influenza season at Baylor Scott & White Health (Temple, TX, USA).
Preexisting anti-interferon-α (anti-IFN-α) autoantibodies in blood are associated with susceptibility to life-threatening COVID-19. However, it is unclear whether anti-IFN-α autoantibodies in the airways, the initial site of infection, can also determine disease outcomes. In this study, we developed a multiparameter technology, FlowBEAT, to quantify and profile the isotypes of anti-severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and anti-IFN-α antibodies in longitudinal samples collected over 20 months from the airways and blood of 129 donors spanning mild to severe COVID-19.
View Article and Find Full Text PDFHead movement plays a vital role in auditory processing by contributing to spatial awareness and the ability to identify and locate sound sources. Here we investigate head-orienting behaviors using a dual-task experimental paradigm to measure: (a) localization of a speech source; and (b) detection of meaningful speech (numbers), within a complex acoustic background. Ten younger adults with normal hearing and 20 older adults with mild-to-severe sensorineural hearing loss were evaluated in the free field on two head-movement conditions: (1) head fixed to the front and (2) head moving to a source location; and two context conditions: (1) with audio only or (2) with audio plus visual cues.
View Article and Find Full Text PDFOlder adults with normal hearing or with age-related hearing loss face challenges when listening to speech in noisy environments. To better serve individuals with communication difficulties, precision diagnostics are needed to characterize individuals' auditory perceptual and cognitive abilities beyond pure tone thresholds. These abilities can be heterogenous across individuals within the same population.
View Article and Find Full Text PDF