The National Cancer Institute (NCI) Image Data Commons (IDC) offers publicly available cancer radiology collections for cloud computing, crucial for developing advanced imaging tools and algorithms. Despite their potential, these collections are minimally annotated; only 4% of DICOM studies in collections considered in the project had existing segmentation annotations. This project increases the quantity of segmentations in various IDC collections.
View Article and Find Full Text PDFDe-identification of medical images intended for research is a core requirement for data-sharing initiatives, particularly as the demand for data for artificial intelligence (AI) applications grows. The Center for Biomedical Informatics and Information Technology (CBIIT) of the US National Cancer Institute (NCI) convened a virtual workshop with the intent of summarizing the state of the art in de-identification technology and processes and exploring interesting aspects of the subject. This paper summarizes the highlights of the first day of the workshop, the recordings, and presentations of which are publicly available for review.
View Article and Find Full Text PDFDe-identification of medical images intended for research is a core requirement for data sharing initiatives, particularly as the demand for data for artificial intelligence (AI) applications grows. The Center for Biomedical Informatics and Information Technology (CBIIT) of the United States National Cancer Institute (NCI) convened a two half-day virtual workshop with the intent of summarizing the state of the art in de-identification technology and processes and exploring interesting aspects of the subject. This paper summarizes the highlights of the second day of the workshop, the recordings and presentations of which are publicly available for review.
View Article and Find Full Text PDFRapid advances in medical imaging Artificial Intelligence (AI) offer unprecedented opportunities for automatic analysis and extraction of data from large imaging collections. Computational demands of such modern AI tools may be difficult to satisfy with the capabilities available on premises. Cloud computing offers the promise of economical access and extreme scalability.
View Article and Find Full Text PDF