Solid-state quantum emitters have emerged as a leading quantum memory for quantum networking applications. However, standard optical characterization techniques are neither efficient nor repeatable at scale. Here we introduce and demonstrate spectroscopic techniques that enable large-scale, automated characterization of colour centres.
View Article and Find Full Text PDFPhotonically integrated resonators are promising as a platform for enabling ultranarrow linewidth lasers in a compact form factor. Owing to their small size, these integrated resonators suffer from thermal noise that limits the frequency stability of the optical mode to ∼100 kHz. Here, we demonstrate an integrated stimulated Brillouin scattering (SBS) laser based on a large mode-volume annulus resonator that realizes an ultranarrow thermal-noise-limited linewidth of 270 Hz.
View Article and Find Full Text PDFIntegrated technologies greatly enhance the prospects for practical quantum information processing and sensing devices based on trapped ions. High-speed and high-fidelity ion state readout is critical for any such application. Integrated detectors offer significant advantages for system portability and can also greatly facilitate parallel operations if a separate detector can be incorporated at each ion-trapping location.
View Article and Find Full Text PDFOvercoming poor readout is an increasingly urgent challenge for devices based on solid-state spin defects, particularly given their rapid adoption in quantum sensing, quantum information, and tests of fundamental physics. However, in spite of experimental progress in specific systems, solid-state spin sensors still lack a universal, high-fidelity readout technique. Here we demonstrate high-fidelity, room-temperature readout of an ensemble of nitrogen-vacancy centers via strong coupling to a dielectric microwave cavity, building on similar techniques commonly applied in cryogenic circuit cavity quantum electrodynamics.
View Article and Find Full Text PDFMicrowave atomic clocks have traditionally served as the 'gold standard' for precision measurements of time and frequency. However, over the past decade, optical atomic clocks have surpassed the precision of their microwave counterparts by two orders of magnitude or more. Extant optical clocks occupy volumes of more than one cubic metre, and it is a substantial challenge to enable these clocks to operate in field environments, which requires the ruggedization and miniaturization of the atomic reference and clock laser along with their supporting lasers and electronics.
View Article and Find Full Text PDF