Publications by authors named "D A Beebe"

Persistent neutrophilic inflammation can lead to tissue damage and chronic inflammation, contributing to non-healing wounds. The resolution phase of neutrophilic inflammation is critical to preventing tissue damage, as observed in diseases characterized by influx of neutrophils such as atherosclerosis and non-healing wounds. Animal models have provided insight into resolution of neutrophilic inflammation via efferocytosis and reverse migration (rM); however, species-specific differences and complexity of innate immune responses make translation to humans challenging.

View Article and Find Full Text PDF

Multispecies microbial communities drive most ecosystems on Earth. Chemical and biological interactions within these communities can affect the survival of individual members and the entire community. However, the prohibitively high number of possible interactions within a microbial community has made the characterization of factors that influence community development challenging.

View Article and Find Full Text PDF

Biofilms are three-dimensional structures containing one or more bacterial species embedded in extracellular polymeric substances. Although most biofilms are stationary, forms a motile spherical biofilm called a zorb, which is propelled by its base cells and contains a polysaccharide core. Here, we report formation of spatially organized, motile, multispecies biofilms, designated "co-zorbs," that are distinguished by a core-shell structure.

View Article and Find Full Text PDF

The tumor microenvironment (TME) is characterized by a network of cancer cells, recruited immune cells, and extracellular matrix (ECM). However, the specific role of neutrophils during tumor development, and their interactions with other immune cells is still not well understood. Here, we use both standard well plate culture and an under oil microfluidic (UOM) assay with an integrated ECM bridge to elucidate how naive primary neutrophils respond to tumor cells.

View Article and Find Full Text PDF

There is an ongoing need to do more with less and provide highly multiplexed analysis from limited sample volumes. Improved "sample sparing" assays would have a broad impact across pediatric and other rare sample type studies in addition to enabling sequential sampling. This capability would advance both clinical and basic research applications.

View Article and Find Full Text PDF