The basal plane of graphene can function as a selective barrier that is permeable to protons but impermeable to all ions and gases, stimulating its use in applications such as membranes, catalysis and isotope separation. Protons can chemically adsorb on graphene and hydrogenate it, inducing a conductor-insulator transition that has been explored intensively in graphene electronic devices. However, both processes face energy barriers and various strategies have been proposed to accelerate proton transport, for example by introducing vacancies, incorporating catalytic metals or chemically functionalizing the lattice.
View Article and Find Full Text PDFWe propose minimal transport experiments in the coherent regime that can probe the chirality of twisted moiré structures. We show that only with a third contact and in the presence of an in-plane magnetic field (or another time-reversal symmetry breaking effect) a chiral system may display nonreciprocal transport in the linear regime. We then propose to use the third lead as a voltage probe and show that opposite enantiomers give rise to different voltage drops on the third lead.
View Article and Find Full Text PDFThe Kubo formula is a cornerstone in our understanding of near-equilibrium transport phenomena. While conceptually elegant, the application of Kubo's linear-response theory to interesting problems is hindered by the need for algorithms that are accurate and scalable to large lattice sizes beyond one spatial dimension. Here, we propose a general framework to numerically study large systems, which combines the spectral accuracy of Chebyshev expansions with the efficiency of divide-and-conquer methods.
View Article and Find Full Text PDFConspectusCarbon capture, utilization, and storage have been identified as key technologies to decarbonize the energy and industrial sectors. Although postcombustion CO capture by absorption in aqueous amines is a mature technology, the required high regeneration energy, losses due to degradation and evaporation, and corrosion carry a high economic cost, precluding this technology to be used today at the scale required to mitigate climate change. Solid adsorbent-based systems with high CO capacities, high selectivity, and lower regeneration energy are becoming an attractive alternative for this purpose.
View Article and Find Full Text PDFThe commercialization of ultrahigh capacity lithium-oxygen (Li-O) batteries is highly dependent on the cathode architecture, and a better understanding of its role in species transport and solid discharge product (i.e., LiO) formation is critical to improving the discharge capacity.
View Article and Find Full Text PDF