Publications by authors named "D'Humieres E"

Interactions between magnetic fields advected by matter play a fundamental role in the Universe at a diverse range of scales. A crucial role these interactions play is in making turbulent fields highly anisotropic, leading to observed ordered fields. These in turn, are important evolutionary factors for all the systems within and around.

View Article and Find Full Text PDF

The quality of the proton beam produced by target normal sheath acceleration (TNSA) with high-power lasers can be significantly improved with the use of helical coils. While they showed promising results in terms of focusing, their performances in terms of the of cut-off energy and bunching stay limited due to the dispersive nature of helical coils. A new scheme of helical coil with a tube surrounding the helix is introduced, and the first numerical simulations and an analytical model show a possibility of a drastic reduction of the current pulse dispersion for the parameters of high-power-laser facilities.

View Article and Find Full Text PDF

The propagation and energy coupling of intense laser beams in plasmas are critical issues in inertial confinement fusion. Applying magnetic fields to such a setup has been shown to enhance fuel confinement and heating. Here we report on experimental measurements demonstrating improved transmission and increased smoothing of a high-power laser beam propagating in a magnetized underdense plasma.

View Article and Find Full Text PDF

A strong quasistationary magnetic field is generated in hollow targets with curved internal surface under the action of a relativistically intense picosecond laser pulse. Experimental data evidence the formation of quasistationary strongly magnetized plasma structures decaying on a hundred picoseconds timescale, with the magnetic field strength of the kilotesla scale. Numerical simulations unravel the importance of transient processes during the magnetic field generation and suggest the existence of fast and slow regimes of plasmoid evolution depending on the interaction parameters.

View Article and Find Full Text PDF

For several decades, the interest of the scientific community in aneutronic fusion reactions such as proton-Boron fusion has grown because of potential applications in different fields. Recently, many scientific teams in the world have worked experimentally on the possibility to trigger proton-Boron fusion using intense lasers demonstrating an important renewal of interest of this field. It is now possible to generate ultra-short high intensity laser pulses at high repetition rate.

View Article and Find Full Text PDF

In an experiment performed with a high-intensity and high-energy laser system, α-particle production in proton-boron reaction by using a laser-driven proton beam was measured. α particles were observed from the front and also from the rear side, even after a 2-mm-thick boron target. The data obtained in this experiment have been analyzed using a sequence of numerical simulations.

View Article and Find Full Text PDF

Laser-driven proton acceleration is a growing field of interest in the high-power laser community. One of the big challenges related to the most routinely used laser-driven ion acceleration mechanism, Target-Normal Sheath Acceleration (TNSA), is to enhance the laser-to-proton energy transfer such as to maximize the proton kinetic energy and number. A way to achieve this is using nanostructured target surfaces in the laser-matter interaction.

View Article and Find Full Text PDF

We report on the cross-calibration of Thomson Parabola (TP) and Time-of-Flight (TOF) detectors as particle diagnostics, implemented on the most recent setup of the ALLS 100 TW laser-driven ion acceleration beamline. The Microchannel Plate (MCP) used for particle detection in the TP spectrometer has been calibrated in intensity on the tandem linear accelerator at the Université de Montréal. The experimental data points of the scaling factor were obtained by performing a pixel cluster analysis of single proton impacts on the MCP.

View Article and Find Full Text PDF

Magnetic reconnection in a relativistic electron magnetization regime was observed in a laboratory plasma produced by a high-intensity, large energy, picoseconds laser pulse. Magnetic reconnection conditions realized with a laser-driven several kilotesla magnetic field is comparable to that in the accretion disk corona of black hole systems, i.e.

View Article and Find Full Text PDF

Relativistic electron temperatures were measured from kilojoule, subrelativistic laser-plasma interactions. Experiments show an order of magnitude higher temperatures than expected from a ponderomotive scaling, where temperatures of up to 2.2 MeV were generated using an intensity of 1×10^{18}W/cm^{2}.

View Article and Find Full Text PDF

Collisionless shocks are ubiquitous in the Universe as a consequence of supersonic plasma flows sweeping through interstellar and intergalactic media. These shocks are the cause of many observed astrophysical phenomena, but details of shock structure and behavior remain controversial because of the lack of ways to study them experimentally. Laboratory experiments reported here, with astrophysically relevant plasma parameters, demonstrate for the first time the formation of a quasiperpendicular magnetized collisionless shock.

View Article and Find Full Text PDF

In this work, we calibrate the newly developed EBT-XD radiochromic films (RCFs) manufactured by Gafchromic using protons in the energy range of 4-10 MeV. Irradiation was performed on the 2 × 6 MV tandem linear accelerator located at the Université de Montréal. The RCFs were digitized using an Epson Perfection V700 flatbed scanner using both the red-green-blue and grayscale channels.

View Article and Find Full Text PDF

We have investigated proton acceleration in the forward direction from a near-critical density hydrogen gas jet target irradiated by a high intensity (10 W/cm), short-pulse (5 ps) laser with wavelength of 1.054 μm. We observed the signature of the Collisionless Shock Acceleration mechanism, namely quasi-monoenergetic proton beams with small divergence in addition to the more commonly observed electron-sheath driven proton acceleration.

View Article and Find Full Text PDF

Interaction of a high-intensity short laser pulse with near-critical plasmas allows us to achieve extremely high coupling efficiency and transfer laser energy to energetic ions. One-dimensional particle-in-cell simulations are considered to detail the processes involved in the energy transfer. A confrontation of the numerical results with the theory highlights a key role played by the process of stimulated Raman scattering in the relativistic regime.

View Article and Find Full Text PDF

Direct production of electron-positron pairs in two-photon collisions, the Breit-Wheeler process, is one of the basic processes in the universe. However, it has never been directly observed in the laboratory because of the absence of the intense γ-ray sources. Laser-induced synchrotron sources emission may open a way to observe this process.

View Article and Find Full Text PDF

A new deterministic method for calculating the dose distribution in the electron radiotherapy field is presented. The aim of this work was to validate our model by comparing it with the Monte Carlo simulation toolkit, GEANT4. A comparison of the longitudinal and transverse dose deposition profiles and electron distributions in homogeneous water phantoms showed a good accuracy of our model for electron transport, while reducing the calculation time by a factor of 50.

View Article and Find Full Text PDF

We report on the first self-consistent numerical study of the feasibility of laser-driven relativistic pair shocks of prime interest for high-energy astrophysics. Using a QED-particle-in-cell code, we simulate the collective interaction between two counterstreaming electron-positron jets driven from solid foils by short-pulse (~60 fs), high-energy (~100 kJ) lasers. We show that the dissipation caused by self-induced, ultrastrong (>10^{6} T) electromagnetic fluctuations is amplified by intense synchrotron emission, which enhances the magnetic confinement and compression of the colliding jets.

View Article and Find Full Text PDF

A model providing an accurate estimate of the charge accumulation on the surface of a metallic target irradiated by a high-intensity laser pulse of fs-ps duration is proposed. The model is confirmed by detailed comparisons with specially designed experiments. Such a model is useful for understanding the electromagnetic pulse emission and the quasistatic magnetic field generation in laser-plasma interaction experiments.

View Article and Find Full Text PDF

A simple setup for the generation of ultra-intense quasistatic magnetic fields, based on the generation of electron currents with a predefined geometry in a curved snail (or 'escargot') target, is proposed and analyzed. Particle-in-cell simulations and qualitative estimates show that gigagauss scale magnetic fields may be obtained with existent laser facilities. The described mechanism of the strong magnetic field generation may be useful in a wide range of applications, from laboratory astrophysics to magnetized inertial confinement fusion schemes.

View Article and Find Full Text PDF

In this paper we describe the physical processes that lead to the generation of giant electromagnetic pulses (GEMPs) at powerful laser facilities. Our study is based on experimental measurements of both the charging of a solid target irradiated by an ultra-short, ultra-intense laser and the detection of the electromagnetic emission in the GHz domain. An unambiguous correlation between the neutralization current in the target holder and the electromagnetic emission shows that the source of the GEMP is the remaining positive charge inside the target after the escape of fast electrons accelerated by the ultra-intense laser.

View Article and Find Full Text PDF

Ultra-intense lasers can nowadays routinely accelerate kiloampere ion beams. These unique sources of particle beams could impact many societal (e.g.

View Article and Find Full Text PDF

Interaction of high-intensity laser pulses with solid targets results in generation of large quantities of energetic electrons that are the origin of various effects such as intense x-ray emission, ion acceleration, and so on. Some of these electrons are escaping the target, leaving behind a significant positive electric charge and creating a strong electromagnetic pulse long after the end of the laser pulse. We propose here a detailed model of the target electric polarization induced by a short and intense laser pulse and an escaping electron bunch.

View Article and Find Full Text PDF

The role of ions in the energy absorption of a short and ultraintense laser pulse and in the synchrotron radiation generated by accelerated electrons is revisited. For laser intensities above 10(22) W/cm(2) and plasma densities more than 10 times the critical density, the ion-to-electron mass ratio strongly affects the energy repartition between the electrons, ions, and radiation. This phenomenon is studied with a one-dimensional relativistic particle-in-cell code, taking into account the radiation reaction force.

View Article and Find Full Text PDF