Motivation: Data reuse is a common and vital practice in molecular biology and enables the knowledge gathered over recent decades to drive discovery and innovation in the life sciences. Much of this knowledge has been collated into molecular biology databases, such as UniProtKB, and these resources derive enormous value from sharing data among themselves. However, quantifying and documenting this kind of data reuse remains a challenge.
View Article and Find Full Text PDFGermline and somatic mutations can give rise to proteins with altered activity, including both gain and loss-of-function. The effects of these variants can be captured in disease-specific reactions and pathways that highlight the resulting changes to normal biology. A disease reaction is defined as an aberrant reaction in which a variant protein participates.
View Article and Find Full Text PDFIntroduction: The COVID-19 Disease Map project is a large-scale community effort uniting 277 scientists from 130 Institutions around the globe. We use high-quality, mechanistic content describing SARS-CoV-2-host interactions and develop interoperable bioinformatic pipelines for novel target identification and drug repurposing.
Methods: Extensive community work allowed an impressive step forward in building interfaces between Systems Biology tools and platforms.
Appreciating the rapid advancement and ubiquity of generative AI, particularly ChatGPT, a chatbot using large language models like GPT, we endeavour to explore the potential application of ChatGPT in the data collection and annotation stages within the Reactome curation process. This exploration aimed to create an automated or semi-automated framework to mitigate the extensive manual effort traditionally required for gathering and annotating information pertaining to biological pathways, adopting a Reactome "reaction-centric" approach. In this pilot study, we used ChatGPT/GPT4 to address gaps in the pathway annotation and enrichment in parallel with the conventional manual curation process.
View Article and Find Full Text PDFPlant Reactome (https://plantreactome.gramene.org) is a freely accessible, comprehensive plant pathway knowledgebase.
View Article and Find Full Text PDFThe Reactome Knowledgebase (https://reactome.org), an Elixir and GCBR core biological data resource, provides manually curated molecular details of a broad range of normal and disease-related biological processes. Processes are annotated as an ordered network of molecular transformations in a single consistent data model.
View Article and Find Full Text PDFDisease variant annotation in the context of biological reactions and pathways can provide a standardized overview of molecular phenotypes of pathogenic mutations that is amenable to computational mining and mathematical modeling. Reactome, an open source, manually curated, peer-reviewed database of human biological pathways, provides annotations for over 4000 disease variants of close to 400 genes in the context of ∼800 disease reactions constituting ∼400 disease pathways. Functional annotation of disease variants proceeds from normal gene functions, through disease variants whose divergence from normal molecular behaviors has been experimentally verified, to extrapolation from molecular phenotypes of characterized variants to variants of unknown significance using criteria of the American College of Medical Genetics and Genomics (ACMG).
View Article and Find Full Text PDFGene inactivation can affect the process(es) in which that gene acts and causally downstream ones, yielding diverse mutant phenotypes. Identifying the genetic pathways resulting in a given phenotype helps us understand how individual genes interact in a functional network. Computable representations of biological pathways include detailed process descriptions in the Reactome Knowledgebase and causal activity flows between molecular functions in Gene Ontology-Causal Activity Models (GO-CAMs).
View Article and Find Full Text PDFLimited knowledge about a substantial portion of protein coding genes, known as "dark" proteins, hinders our understanding of their functions and potential therapeutic applications. To address this, we leveraged Reactome, the most comprehensive, open source, open-access pathway knowledgebase, to contextualize dark proteins within biological pathways. By integrating multiple resources and employing a random forest classifier trained on 106 protein/gene pairwise features, we predicted functional interactions between dark proteins and Reactome-annotated proteins.
View Article and Find Full Text PDFModeling biological processes and genetic-regulatory networks using in silico approaches provides a valuable framework for understanding how genes and associated allelic and genotypic differences result in specific traits. Submergence tolerance is a significant agronomic trait in rice; however, the gene-gene interactions linked with this polygenic trait remain largely unknown. In this study, we constructed a network of 57 transcription factors involved in seed germination and coleoptile elongation under submergence.
View Article and Find Full Text PDFGene inactivation can affect the process(es) in which that gene acts and causally downstream ones, yielding diverse mutant phenotypes. Identifying the genetic pathways resulting in a given phenotype helps us understand how individual genes interact in a functional network. Computable representations of biological pathways include detailed process descriptions in the Reactome Knowledgebase, and causal activity flows between molecular functions in Gene Ontology-Causal Activity Models (GO-CAMs).
View Article and Find Full Text PDFPathway databases provide descriptions of the roles of proteins, nucleic acids, lipids, carbohydrates, and other molecular entities within their biological cellular contexts. Pathway-centric views of these roles may allow for the discovery of unexpected functional relationships in data such as gene expression profiles and somatic mutation catalogues from tumor cells. For this reason, there is a high demand for high-quality pathway databases and their associated tools.
View Article and Find Full Text PDFThe Gene Ontology (GO) knowledgebase (http://geneontology.org) is a comprehensive resource concerning the functions of genes and gene products (proteins and noncoding RNAs). GO annotations cover genes from organisms across the tree of life as well as viruses, though most gene function knowledge currently derives from experiments carried out in a relatively small number of model organisms.
View Article and Find Full Text PDFThe Reactome Knowledgebase (https://reactome.org), an Elixir core resource, provides manually curated molecular details across a broad range of physiological and pathological biological processes in humans, including both hereditary and acquired disease processes. The processes are annotated as an ordered network of molecular transformations in a single consistent data model.
View Article and Find Full Text PDFWe need to effectively combine the knowledge from surging literature with complex datasets to propose mechanistic models of SARS-CoV-2 infection, improving data interpretation and predicting key targets of intervention. Here, we describe a large-scale community effort to build an open access, interoperable and computable repository of COVID-19 molecular mechanisms. The COVID-19 Disease Map (C19DMap) is a graphical, interactive representation of disease-relevant molecular mechanisms linking many knowledge sources.
View Article and Find Full Text PDFMotivation: Gene Ontology Causal Activity Models (GO-CAMs) assemble individual associations of gene products with cellular components, molecular functions and biological processes into causally linked activity flow models. Pathway databases such as the Reactome Knowledgebase create detailed molecular process descriptions of reactions and assemble them, based on sharing of entities between individual reactions into pathway descriptions.
Results: To convert the rich content of Reactome into GO-CAMs, we have developed a software tool, Pathways2GO, to convert the entire set of normal human Reactome pathways into GO-CAMs.
Gramene (http://www.gramene.org), a knowledgebase founded on comparative functional analyses of genomic and pathway data for model plants and major crops, supports agricultural researchers worldwide.
View Article and Find Full Text PDFThe 21st century has revealed much about the fundamental cellular process of autophagy. Autophagy controls the catabolism and recycling of various cellular components both as a constitutive process and as a response to stress and foreign material invasion. There is considerable knowledge of the molecular mechanisms of autophagy, and this is still growing as new modalities emerge.
View Article and Find Full Text PDFReactome is a manually curated, open-source, open-data knowledge base of biomolecular pathways. Reactome has always provided clear credit attribution for authors, curators and reviewers through fine-grained annotation of all three roles at the reaction and pathway level. These data are visible in the web interface and provided through the various data download formats.
View Article and Find Full Text PDFThe Reactome Knowledgebase (https://reactome.org) provides molecular details of signal transduction, transport, DNA replication, metabolism and other cellular processes as an ordered network of molecular transformations in a single consistent data model, an extended version of a classic metabolic map. Reactome functions both as an archive of biological processes and as a tool for discovering functional relationships in data such as gene expression profiles or somatic mutation catalogs from tumor cells.
View Article and Find Full Text PDFPlant Reactome (https://plantreactome.gramene.org) is an open-source, comparative plant pathway knowledgebase of the Gramene project.
View Article and Find Full Text PDFMany bioinformatics resources with unique perspectives on the protein landscape are currently available. However, generating new knowledge from these resources requires interoperable workflows that support cross-resource queries. In this study, we employ federated queries linking information from the Protein Kinase Ontology, iPTMnet, Protein Ontology, neXtProt, and the Mouse Genome Informatics to identify key knowledge gaps in the functional coverage of the human kinome and prioritize understudied kinases, cancer variants and post-translational modifications (PTMs) for functional studies.
View Article and Find Full Text PDF