Publications by authors named "D'Apice A"

Introduction. The global sanitary crisis due to covid 19 has had an unprecedent impact on human health and on the global economy creating unexpected challenges on work life. In Italy in order to limit the velocity of virus transmission, measures aimed towards social distancing were adopted by suspending all non essential working activities, with the recommendation of the maximum use of smart working (DPCM 01 MARCH 2020).

View Article and Find Full Text PDF

Islet transplantation can potentially cure type 1 diabetes mellitus, but it is limited by a shortage of human donors as well as by islet graft destruction by inflammatory and thrombotic mechanisms. A possible solution to these problems is to use genetically modified pig islets. Endothelial protein C receptor (EPCR) enhances protein C activation and regulates coagulation, inflammation, and apoptosis.

View Article and Find Full Text PDF

Background: ABO-incompatible (ABOi) organ transplantation is performed owing to unremitting donor shortages. Defining mechanisms of antibody-mediated rejection, accommodation, and tolerance of ABOi grafts is limited by lack of a suitable animal model. We report generation and characterization of a murine model to enable study of immunobiology in the setting of ABOi transplantation.

View Article and Find Full Text PDF

Background: Survival of vascularized xenografts is dependent on pre-emptive inhibition of the xenoantibody response against galactosyltransferase knockout (GTKO) porcine organs. Our analysis in multiple GTKO pig-to-primate models of xenotransplantation has demonstrated that the anti-non-gal-α-1,3-gal (anti-non-Gal) xenoantibody response displays limited structural diversity. This allowed our group to identify an experimental compound which selectively inhibited induced anti-non-Gal IgM xenoantibodies.

View Article and Find Full Text PDF

Galactosyl-transferase KO (GalT-KO) pigs represent a potential solution to xenograft rejection, particularly in the context of additional genetic modifications. We have performed life supporting kidney xenotransplantation into baboons utilizing GalT-KO pigs transgenic for human CD55/CD59/CD39/HT. Baboons received tacrolimus, mycophenolate mofetil, corticosteroids and recombinant human C1 inhibitor combined with cyclophosphamide or bortezomib with or without 2-3 plasma exchanges.

View Article and Find Full Text PDF

Glycosylation processes are under high natural selection pressure, presumably because these can modulate resistance to infection. Here, we asked whether inactivation of the UDP-galactose:β-galactoside-α1-3-galactosyltransferase (α1,3GT) gene, which ablated the expression of the Galα1-3Galβ1-4GlcNAc-R (α-gal) glycan and allowed for the production of anti-α-gal antibodies (Abs) in humans, confers protection against Plasmodium spp. infection, the causative agent of malaria and a major driving force in human evolution.

View Article and Find Full Text PDF

The instant blood-mediated inflammatory reaction (IBMIR) is a major obstacle to the engraftment of intraportal pig islet xenografts in primates. Higher expression of the galactose-α1,3-galactose (αGal) xenoantigen on neonatal islet cell clusters (NICC) than on adult pig islets may provoke a stronger reaction, but this has not been tested in the baboon model. Here, we report that WT pig NICC xenografts triggered profound IBMIR in baboons, with intravascular clotting and graft destruction occurring within hours, which was not prevented by anti-thrombin treatment.

View Article and Find Full Text PDF

Background: Xenotransplantation of porcine organs holds promise of solving the human organ donor shortage. The use of α-1,3-galactosyltransferase knockout (GTKO) pig donors mitigates hyperacute rejection, while delayed rejection is currently precipitated by potent immune and hemostatic complications. Previous analysis by our laboratory suggests that clotting factor VIII (FVIII) inhibitors might be elicited by the structurally restricted xenoantibody response which occurs after transplantation of either pig GTKO/hCD55/hCD59/hHT transgenic neonatal islet cell clusters or GTKO endothelial cells.

View Article and Find Full Text PDF

Background: Promising developments in porcine islet xenotransplantation could resolve the donor pancreas shortage for patients with type 1 diabetes. Using α1,3-galactosyltransferase gene knockout (GTKO) donor pigs with multiple transgenes should extend xenoislet survival via reducing complement activation, thrombus formation, and the requirement for exogenous immune suppression. Studying the xenoantibody response to GTKO/hCD55/hCD59/hHT islets in the pig-to-baboon model, and comparing it with previously analyzed responses, would allow the development of inhibitory reagents capable of targeting conserved idiotypic regions.

View Article and Find Full Text PDF

Background: B-cell depletion significantly extends survival of α-1,3-galactosyltranferase knockout (GTKO) porcine organs in pig-to-primate models. Our previous work demonstrated that the anti-non-Gal xenoantibody response is structurally restricted. Selective inhibition of xenoantigen/xenoantibody interactions could prolong xenograft survival while preserving B-cell-mediated immune surveillance.

View Article and Find Full Text PDF

Differential protein glycosylation in the donor and recipient can have profound consequences for transplanted organs, as evident in ABO-incompatible transplantation and xenotransplantation. In this study, we investigated the impact of altered fucosylation on graft acceptance by using donor mice overexpressing human α1,2-fucosyltransferase (HTF). Skin and heart grafts from HTF transgenic mice were rapidly rejected by otherwise completely matched recipients (median survival times 16 and 14 days, respectively).

View Article and Find Full Text PDF

Xenotransplantation using pigs as donors offers the possibility of eliminating the chronic shortage of donor kidneys, but there are several obstacles to be overcome before this goal can be achieved. Preclinical studies have shown that, while porcine renal xenografts are broadly compatible physiologically, they provoke a complex rejection process involving preformed and elicited antibodies, heightened innate immune cell reactivity, dysregulated coagulation, and a strong T cell-mediated adaptive response. Furthermore, the susceptibility of the xenograft to proinflammatory and procoagulant stimuli is probably increased by cross-species molecular defects in regulatory pathways.

View Article and Find Full Text PDF

Background: Glutaraldehyde fixation does not guarantee complete tissue biocompatibility in current clinical bioprosthetic heart valves (BHVs). Particularly, circulating anti-αGal human antibodies increase significantly from just 10 days after a BHV implantation. The inactivation of such epitope should be mandatory to meet the requirements for a perspectively safe clinical application; nevertheless, its quantitative assessment in commercially available BHVs has never been carried out.

View Article and Find Full Text PDF
Article Synopsis
  • - The study aimed to determine if producing anti-human CD2 antibodies via adenovirus in pig islet cell clusters could protect transplanted grafts from immune rejection in a humanized mouse model.
  • - Three types of engineered antibodies (dilimomab, diliximab, and dilizumab) were tested for their effectiveness in binding human T cells and inhibiting immune responses, revealing that dilimomab and diliximab were effective while dilizumab was not.
  • - Results indicated that localized production of diliximab in transplanted grafts could deplete human T cells at the site without affecting the overall immune system, suggesting a potential new approach to reduce reliance on systemic immunosuppression. *
View Article and Find Full Text PDF

Islet allograft survival limits the long-term success of islet transplantation as a potential curative therapy for type 1 diabetes. A number of factors compromise islet survival, including recurrent diabetes. We investigated whether CD39, an ectonucleotidase that promotes the generation of extracellular adenosine, would mitigate diabetes in the T cell-mediated multiple low-dose streptozotocin (MLDS) model.

View Article and Find Full Text PDF

Unlabelled: Ischemia-reperfusion injury (IRI) is a major limiting event for successful liver transplantation, and CD4+ T cells and invariant natural killer T (iNKT) cells have been implicated in promoting IRI. We hypothesized that hepatic overexpression of CD39, an ectonucleotidase with antiinflammatory functions, will protect liver grafts after prolonged cold ischemia. CD39-transgenic (CD39tg) and wildtype (WT) mouse livers were transplanted into WT recipients after 18 hours cold storage and pathological analysis was performed 6 hours after transplantation.

View Article and Find Full Text PDF

Thrombosis and inflammation are major obstacles to successful pig-to-human solid organ xenotransplantation. A potential solution is genetic modification of the donor pig to overexpress molecules such as the endothelial protein C receptor (EPCR), which has anticoagulant, anti-inflammatory and cytoprotective signaling properties. Transgenic mice expressing human EPCR (hEPCR) were generated and characterized to test this approach.

View Article and Find Full Text PDF

Modulation of purinergic signaling, which is critical for vascular homeostasis and the response to vascular injury, is regulated by hydrolysis of proinflammatory ATP and/or ADP by ectonucleoside triphosphate diphosphohydrolase 1 (ENTPD-1; CD39) to AMP, which then is hydrolyzed by ecto-5'-nucleotidase (CD73) to adenosine. We report here that compared with littermate controls (wild type), transgenic mice expressing human ENTPDase-1 were resistant to the formation of an occlusive thrombus after FeCl(3)-induced carotid artery injury. Treatment of mice with the nonhydrolyzable ADP analog, adenosine-5'-0-(2-thiodiphosphate) trilithium salt, Ado-5'-PP[S], negated the protection from thrombosis, consistent with a role for ADP in platelet recruitment and thrombus formation.

View Article and Find Full Text PDF

Unlabelled: CD39 (ectonucleoside triphosphate diphosphohydrolase-1; ENTPD-1) rapidly hydrolyzes ATP and ADP to AMP; AMP is hydrolyzed by ecto-5'-nucleotidase (CD73) to adenosine, an anti-thrombotic and cardiovascular protective mediator. While expression of human CD39 in a murine model of myocardial ischemia/reperfusion (I/R) injury confers cardiac protection, the translational therapeutic potential of these findings requires further testing in a large animal model. To determine if transgenic expression of CD39 reduces infarct size in a swine model of myocardial ischemia/reperfusion injury, transgenic pigs expressing human CD39 (hCD39) were generated via somatic cell nuclear transfer and characterized.

View Article and Find Full Text PDF

Galactosyl-transferase knockout (GT-KO) pigs represent the latest major progress to reduce immune reactions in xenotransplantation. However, their organs are still subject to rapid humoral rejection involving complement activation requiring the ongoing development of further genetic modifications in the pig. In a pig-to-baboon renal transplantation setting, we have used donor pigs that are not only GT-KO, but also transgenic for human CD55 (hCD55), hCD59, hCD39, and fucosyl-transferase (hHT).

View Article and Find Full Text PDF

Modulation of purinergic signaling is critical to myocardial homeostasis. Ectonucleoside triphosphate diphosphohydrolase 1 (ENTPD-1; CD39) which converts the proinflammatory molecules ATP or ADP to AMP is a key regulator of purinergic modulation. However, the salutary effects of transgenic over expression of ENTPD-1 on myocardial response to ischemic injury have not been tested to date.

View Article and Find Full Text PDF

Background: Acute humoral xenograft rejection (AHXR) is an important barrier to xenograft survival. Human tumor necrosis factor-α (hTNF-α) is one of the essential mediators of AHXR and induces activation of porcine endothelial cells (PECs), resulting in upregulation of major histocompatibility complex molecules, adhesion molecules, and proinflammatory chemokines. We investigated whether introduction of a soluble human tumor necrosis factor receptor I-Fc (shTNFRI-Fc) fusion gene can suppress activation of PECs and, more importantly, produced shTNFRI-Fc transgenic pigs.

View Article and Find Full Text PDF

Background: Expression of multiple graft-protective proteins targeted to different locations (i.e., intracellular, cell surface, and secreted) has become an increasingly important goal in xenotransplantation.

View Article and Find Full Text PDF

Despite improvements in prevention and management of colorectal cancer (CRC), uncontrolled tumor growth with metastatic spread to distant organs remains an important clinical concern. Genetic deletion of CD39, the dominant vascular and immune cell ectonucleotidase, has been shown to delay tumor growth and blunt angiogenesis in mouse models of melanoma, lung and colonic malignancy. Here, we tested the influence of CD39 on CRC tumor progression and metastasis by investigating orthotopic transplanted and metastatic cancer models in wild-type BALB/c, human CD39 transgenic and CD39 deficient mice.

View Article and Find Full Text PDF