The area of HER2-positive breast cancer is a rapidly changing field. The use of the humanized monoclonal antibody, trastuzumab, significantly improved the prognosis for patients with HER2-positive breast cancer, however, increasing knowledge regarding mechanisms of resistance to trastuzumab have come to light, prompting research into additional methods to target the HER2 protein. The purpose of this article is to discuss evidence for why continued blockade of the HER2 pathway continues to be important despite progression on trastuzumab, as well as to review additional HER2-targeted therapies and progression in the central nervous system.
View Article and Find Full Text PDFIn previous studies, we reported that key antioxidant and DNA repair genes are regulated differently in normal bronchial epithelial cells of lung cancer cases compared with non-lung cancer controls. In an effort to develop a biomarker for lung cancer risk, we evaluated the transcript expressions of 14 antioxidant, DNA repair, and transcription factor genes in normal bronchial epithelial cells (HUGO names CAT, CEBPG, E2F1, ERCC4, ERCC5, GPX1, GPX3, GSTM3, GSTP1, GSTT1, GSTZ1, MGST1, SOD1, and XRCC1). A test comprising these 14 genes accurately identified the lung cancer cases in two case-control studies.
View Article and Find Full Text PDFBackground: Cigarette smoking is the primary cause of bronchogenic carcinoma (BC), yet only 10-15% of heavy smokers develop BC and it is likely that this variation in risk is, in part, genetically determined. We previously reported a set of antioxidant genes for which transcript abundance was lower in normal bronchial epithelial cells (NBEC) of BC individuals compared to non-BC individuals. In unpublished studies of the same NBEC samples, transcript abundance values for several DNA repair genes were correlated with these antioxidant genes.
View Article and Find Full Text PDF