Publications by authors named "D'Ann Rochon"

The zoosporic obligate endoparasites, Olpidium, hold a pivotal position to the reconstruction of the flagellum loss in fungi, one of the key morphological transitions associated with the colonization of land by the early fungi. We generated genome and transcriptome data from non-axenic zoospores of Olpidium bornovanus and used a metagenome approach to extract phylogenetically informative fungal markers. Our phylogenetic reconstruction strongly supported Olpidium as the closest zoosporic relative of the non-flagellated terrestrial fungi.

View Article and Find Full Text PDF

Cucumber necrosis virus (CNV) is a (+)ssRNA virus that elicits spreading local and systemic necrosis in Nicotiana benthamiana. We previously showed that the CNV coat protein (CP) arm functions as a chloroplast transit peptide that targets a CP fragment containing the S and P domains to chloroplasts during infection. Here we show that several CP arm mutants that inefficiently target chloroplasts, along with a mutant that lacks the S and P domains, show an early onset of more localized necrosis along with protracted induction of pathogenesis related protein (PR1a).

View Article and Find Full Text PDF

Members of the family have highly similar structures, and yet there are important differences among them in host, transmission, and capsid stabilities. Viruses in the family have single-stranded RNA (ssRNA) genomes with T=3 icosahedral protein shells with a maximum diameter of ∼340 Å. Each capsid protein is comprised of three domains: R (RNA binding), S (shell), and P (protruding).

View Article and Find Full Text PDF

Cucumber necrosis virus (CNV) is a T = 3 icosahedral virus with a (+)ssRNA genome. The N-terminal CNV coat protein arm contains a conserved, highly basic sequence ("KGRKPR"), which we postulate is involved in RNA encapsidation during virion assembly. Seven mutants were constructed by altering the CNV "KGRKPR" sequence; the four basic residues were mutated to alanine individually, in pairs, or in total.

View Article and Find Full Text PDF

(CNV) is a member of the genus and has a monopartite positive-sense RNA genome. CNV is transmitted in nature via zoospores of the fungus As with other members of the genus, the CNV capsid swells when exposed to alkaline pH and EDTA. We previously demonstrated that a P73G mutation blocks the virus from zoospore transmission while not significantly affecting replication in plants (K.

View Article and Find Full Text PDF

Unlabelled: Uncoating of a virus particle to expose its nucleic acid is a critical aspect of the viral multiplication cycle, as it is essential for the establishment of infection. In the present study, we investigated the role of plant HSP70 homologs in the uncoating process of Cucumber necrosis virus (CNV), a nonenveloped positive-sense single-stranded RNA [(+)ssRNA] virus having a T=3 icosahedral capsid. We have found through Western blot analysis and mass spectrometry that the HSP70 homolog Hsc70-2 copurifies with CNV particles.

View Article and Find Full Text PDF

Unlabelled: RNA viruses often depend on host factors for multiplication inside cells due to the constraints of their small genome size and limited coding capacity. One such factor that has been exploited by several plant and animal viruses is heat shock protein 70 (HSP70) family homologs which have been shown to play roles for different viruses in viral RNA replication, viral assembly, disassembly, and cell-to-cell movement. Using next generation sequence analysis, we reveal that several isoforms of Hsp70 and Hsc70 transcripts are induced to very high levels during cucumber necrosis virus (CNV) infection of Nicotiana benthamiana and that HSP70 proteins are also induced by at least 10-fold.

View Article and Find Full Text PDF

Unlabelled: Next-generation sequence analysis of virus-like particles (VLPs) produced during agroinfiltration of cucumber necrosis virus (CNV) coat protein (CP) and of authentic CNV virions was conducted to assess if host RNAs can be encapsidated by CNV CP. VLPs containing host RNAs were found to be produced during agroinfiltration, accumulating to approximately 1/60 the level that CNV virions accumulated during infection. VLPs contained a variety of host RNA species, including the major rRNAs as well as cytoplasmic, chloroplast, and mitochondrial mRNAs.

View Article and Find Full Text PDF

Cucumber leaf spot virus (CLSV) is a member of the Aureusvirus genus, family Tombusviridae. The auxiliary replicase of Tombusvirids has been found to localize to endoplasmic reticulum (ER), peroxisomes or mitochondria; however, localization of the auxiliary replicase of aureusviruses has not been determined. We have found that the auxiliary replicase of CLSV (p25) fused to GFP colocalizes with ER and that three predicted transmembrane domains (TMDs) at the N-terminus of p25 are sufficient for targeting, although the second and third TMDs play the most prominent roles.

View Article and Find Full Text PDF

Tombusviruses replicate on pre-existing organelles such as peroxisomes or mitochondria, the membranes of which become extensively reorganized into multivesicular bodies (MVBs) during the infection process. Cucumber necrosis virus (CNV) has previously been shown to replicate in association with peroxisomes in yeast. We show that CNV induces MVBs from peroxisomes in infected plants and that GFP-tagged p33 auxiliary replicase protein colocalizes with YFP(SKL), a peroxisomal marker.

View Article and Find Full Text PDF

Cucumber Necrosis Virus (CNV) is a member of the genus Tombusvirus and has a monopartite positive-sense RNA genome packaged in a T=3 icosahedral particle. CNV is transmitted in nature via zoospores of the fungus Olpidium bornovanus. CNV undergoes a conformational change upon binding to the zoospore that is required for transmission, and specific polysaccharides on the zoospore surface have been implicated in binding.

View Article and Find Full Text PDF

Background: From a common ancestor with animals, the earliest fungi inherited flagellated zoospores for dispersal in water. Terrestrial fungi lost all flagellated stages and reproduce instead with nonmotile spores. Olpidium virulentus (= Olpidium brassicae), a unicellular fungus parasitizing vascular plant root cells, seemed anomalous.

View Article and Find Full Text PDF

The p20 protein encoded by the tombusvirus, Cucumber necrosis virus has previously been shown to be involved in host pathogenicity and shares sequence similarity with the Tomato bushy stunt virus p19 suppressor of silencing. Using a virus-induced gene silencing (VIGS) assay, we show that p20 is a viral suppressor of RNA silencing (VSR) in infected plants. In addition, a CNV p20-knockout mutant showed a decline in viral RNA accumulation in infected plants, consistent with the role of p20 in suppression of RNA silencing.

View Article and Find Full Text PDF

Cucumber necrosis virus (CNV) is a spherical virus consisting of 180 identical coat protein (CP) subunits. The N-terminus of the CP subunit contains a 58aa RNA binding (R) domain and a 34aa arm that connects the R domain to the shell. These regions are known to play critical roles in virus assembly and disassembly.

View Article and Find Full Text PDF

The Cucumber necrosis virus particle is a T=3 icosahedron consisting of 180 identical coat protein (CP) subunits. The N-terminal 58 aa residue segment of the CP R domain is believed to bind viral RNA within virions and during assembly. We report results of in vivo experiments that examine the role of the R domain in assembly.

View Article and Find Full Text PDF
Fungal transmission of plant viruses.

Curr Protoc Microbiol

February 2009

Fungal zoospores of Olpidium species transmit several viruses in the family Tombusviridae as well as in the Ophio- and Varicosavirus genera. This unit describes procedures for virus transmission by Olpidium sp. The method is useful for assessing fungal transmissibility of a given virus as well as for further studies on molecular and biological aspects of virus/vector interaction.

View Article and Find Full Text PDF

The Cucumber necrosis virus (CNV) particle is a T=3 icosahedron consisting of 180 identical coat protein (CP) subunits. Plants infected with wild-type CNV accumulate a high number of T=3 particles, but other particle forms have not been observed. Particle polymorphism in several T=3 icosahedral viruses has been observed in vitro following the removal of an extended N-terminal region of the CP subunit.

View Article and Find Full Text PDF

Cucumber necrosis virus (CNV) is a member of the genus Tombusvirus, of which tomato bushy stunt virus (TBSV) is the type member. The capsid protein for this group of viruses is composed of three major domains: the R domain, which interacts with the RNA genome: the S domain, which forms the tight capsid shell: and the protruding P domain, which extends approximately 40 Angstrom from the surface. Here, we present the cryo-transmission electron microscopy structures of both the T=1 and T=3 capsids to a resolution of approximately 12 Angstrom.

View Article and Find Full Text PDF

Experiments to determine the subcellular location of the coat protein (CP) of the tombusvirus Cucumber necrosis virus (CNV) have been conducted. By confocal microscopy, it was found that an agroinfiltrated CNV CP-green fluorescent protein (GFP) fusion targets chloroplasts in Nicotiana benthamiana leaves and that a 38-amino-acid (aa) region that includes the complete CP arm region plus the first 4 amino acids of the shell domain are sufficient for targeting. Western blot analyses of purified and fractionated chloroplasts showed that the 38-aa region directs import to the chloroplast stroma, suggesting that the CNV arm can function as a chloroplast transit peptide (TP) in plants.

View Article and Find Full Text PDF

The Cucumber necrosis virus (CNV) particle is a T=3 icosahedron composed of 180 identical coat protein (CP) subunits. Each CP subunit includes a 34-amino-acid (aa) arm which connects the RNA binding and shell domains. The arm is comprised of an 18-aa "beta" region and a 16-aa "epsilon" region, with the former contributing to a beta-annular structure involved in particle stability and the latter contributing to quasiequivalence and virion RNA binding.

View Article and Find Full Text PDF

The genome structures of a large number of viruses transmitted by olpidium and plasmodiophorid vectors have been determined. The viruses are highly diverse, belonging to 12 genera in at least 4 families. Plasmodiophorids are now classified as protists rather than true fungi.

View Article and Find Full Text PDF

Transmission of Cucumber necrosis virus (CNV) by zoospores of its fungal vector, Olpidium bornovanus, involves specific adsorption of virus particles onto the zoospore plasmalemma prior to infestation of cucumber roots by virus-bound zoospores. Previous work has shown that specific components of both CNV and zoospores are required for successful CNV/zoospore recognition. Here, we show that limited trypsin digestion of CNV following in vitro CNV/zoospore binding assays, results in the production of specific proteolytic digestion products under conditions where native CNV is resistant.

View Article and Find Full Text PDF

Despite the importance of vectors in natural dissemination of plant viruses, relatively little is known about the molecular features of viruses and vectors that permit their interaction in nature. Cucumber necrosis virus (CNV) is a small spherical virus whose transmission in nature is facilitated by zoospores of the fungus Olpidium bornovanus. Previous studies have shown that specific regions of the CNV capsid are involved in transmission and that transmission defects in several CNV transmission mutants are due to inefficient attachment of virions to the zoospore surface.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionuh9actf7bcai6abn81eo7q1tq3buj2vc): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once