Publications by authors named "D'ARCY P"

The proteasome-associated deubiquitinase USP14 is a potential drug target. Using an inducible USP14 knockout system in colon cancer cells, we found that USP14 depletion impedes cellular proliferation, induces cell cycle arrest, and leads to a senescence-like phenotype. Transcriptomic analysis revealed altered gene expression related to cell division and cellular differentiation.

View Article and Find Full Text PDF

The deubiquitinase (DUB) ubiquitin-specific protease 14 (USP14) is a dual domain protein that plays a regulatory role in proteasomal degradation and has been identified as a promising therapeutic target. USP14 comprises a conserved USP domain and a ubiquitin-like (Ubl) domain separated by a 25-residue linker. The enzyme activity of USP14 is autoinhibited in solution, but is enhanced when bound to the proteasome, where the Ubl and USP domains of USP14 bind to the Rpn1 and Rpt1/Rpt2 units, respectively.

View Article and Find Full Text PDF

The forkhead box family transcription factor FOXQ1 is highly induced in several types of carcinomas, where it promotes epithelial-to-mesenchymal transition and tumor metastasis. The molecular mechanisms that lead to FOXQ1 deregulation in cancer are incompletely understood. Here, we used CRISPR-Cas9-based genomic locus proteomics and promoter reporter constructs to discover transcriptional regulators of FOXQ1 and identified the tumor suppressor p53 as a negative regulator of FOXQ1 expression.

View Article and Find Full Text PDF

Despite the enormous advancements in nanomedicine research, a limited number of nanoformulations are available on the market, and few have been translated to clinics. An easily scalable, sustainable, and cost-effective manufacturing strategy and long-term stability for storage are crucial for successful translation. Here, we report a system and method to instantly formulate NF achieved with a nanoscale polyelectrolyte coacervate-like system, consisting of anionic pseudopeptide poly(l-lysine isophthalamide) derivatives, polyethylenimine, and doxorubicin (Dox) via simple "mix-and-go" addition of precursor solutions in seconds.

View Article and Find Full Text PDF

The identification of therapeutic approaches to improve response to platinum-based therapies is an urgent need for ovarian carcinoma. Deubiquitinases are a large family of ubiquitin proteases implicated in a variety of cellular functions and may contribute to tumor aggressive features through regulation of processes such as proliferation and cell death. Among the subfamily of ubiquitin-specific peptidases, USP8 appears to be involved in modulation of cancer cell survival by still poorly understood mechanisms.

View Article and Find Full Text PDF

The broad spectrum of curcumin's beneficial properties has encouraged medicinal researchers to investigate its therapeutic efficacy against diverse diseases. The clinical potential of curcumin is, however limited due to its poor pharmacodynamic/pharmacokinetic properties (such as low solubility, pH instability, poor absorption in circulation, rapid elimination from the body and photochemical degradation). 3,5-Bis(ylidene)-4-piperidone scaffolds are considered a curcumin mimic that exhibit diverse bio-properties.

View Article and Find Full Text PDF

Dienone compounds have been demonstrated to display tumor-selective anti-cancer activity independently of the mutational status of TP53. Previous studies have shown that cell death elicited by this class of compounds is associated with inhibition of the ubiquitin-proteasome system (UPS). Here we extend previous findings by showing that the dienone compound b-AP15 inhibits proteasomal degradation of long-lived proteins.

View Article and Find Full Text PDF

Deubiquitinases (DUBs) mediate the removal of ubiquitin from diverse proteins that participate in the regulation of cell survival, DNA damage repair, apoptosis and drug resistance. Previous studies have shown an association between activation of cell survival pathways and platinum-drug resistance in ovarian carcinoma cell lines. Among the strategies available to inhibit DUBs, curcumin derivatives appear promising, thus we hypothesized their use to enhance the efficacy of cisplatin in ovarian carcinoma preclinical models.

View Article and Find Full Text PDF

Dienone compounds with a 1,5-diaryl-3-oxo-1,4-pentadienyl pharmacophore have been widely reported to show tumor cell selectivity. These compounds target the ubiquitin-proteasome system (UPS), known to be essential for the viability of tumor cells. The induction of oxidative stress, depletion of glutathione, and induction of high-molecular-weight (HMW) complexes have also been reported.

View Article and Find Full Text PDF

Inhibitors of the 20S proteasome such as bortezomib (Velcade) and carfilzomib (Kypriolis) are in clinical use for the treatment of patients with multiple myeloma and mantle cell lymphoma. In an attempt to identify novel inhibitors of the ubiquitin-proteasome system (UPS) we used the connectivity map (CMap) resource, based on alterations of gene expression profiles by perturbagens, and performed COMPARE analyses of drug sensitivity patterns in the NCI panel. Cmap analysis identified a large number of small molecules with strong connectivity to proteasome inhibition, including both well characterized inhibitors of the 20S proteasome and molecules previously not described to inhibit the UPS.

View Article and Find Full Text PDF

The proteasome is a validated target of cancer therapeutics. Inhibition of proteasome activity results in the activation of the unfolded protein response (UPR) characterized by phosphorylation of eukaryotic initiation factor 2α (eIF2α), global translational arrest, and increased expression of the proapoptotic CHOP (C/EBP homologous protein) protein. Defects in the UPR response has been reported to result in altered sensitivity of tumor cells to proteasome inhibitors.

View Article and Find Full Text PDF

Following the outbreak of novel severe acute respiratory syndrome (SARS)-coronavirus (CoV)2, the majority of nations are struggling with countermeasures to fight infection, prevent spread and improve patient survival. Considering that the pandemic is a recent event, no large clinical trials have been possible and since coronavirus specific drug are not yet available, there is no strong consensus on how to treat the coronavirus disease 2019 (COVID-19) associated viral pneumonia. Coronaviruses code for an important multifunctional enzyme named papain-like protease (PLP), that has many roles in pathogenesis.

View Article and Find Full Text PDF

Background: b-AP15/VLX1570 are small molecule inhibitors of the ubiquitin specific peptidase 14 (USP14) and ubiquitin carboxyl-terminal hydrolase 5 (UCHL5) deubiquitinases (DUBs) of the 19S proteasome. b-AP15/VLX1570 have been shown to be cytotoxic to cells resistant to bortezomib, raising the possibility that this class of drugs can be used as a second-line therapy for treatment-resistant multiple myeloma. Limited information is available with regard to potential resistance mechanisms to b-AP15/VLX1570.

View Article and Find Full Text PDF
Article Synopsis
  • A significant number of natural products are being explored as potential anticancer agents due to their chemical reactivity and functional groups.
  • Approximately 20% of synthetic cytotoxic compounds with Michael acceptor groups were found to inhibit proteasome activity, leading to a typical cellular response seen with proteasome inhibition.
  • The study revealed that some compounds bind to the proteasome's USP14, causing cell death associated with antineoplastic activity, particularly demonstrated in zebrafish embryos.
View Article and Find Full Text PDF

Inhibitors of the 20S proteasome such as bortezomib are cytotoxic to tumor cells and have been proven to be valuable for the clinical management of multiple myeloma. The therapeutic efficacy of bortezomib is, however, hampered by the emergence of acquired resistance. Available data suggest that blocking proteasome activity at the level of proteasome-associated deubiquitinases (DUBs) provides a mechanism to overcome resistance to bortezomib and also to other cancer therapies.

View Article and Find Full Text PDF

Auranofin is a gold (I)-containing compound used for the treatment of rheumatic arthritis. Auranofin has anticancer activity in animal models and is approved for clinical trials for lung and ovarian carcinomas. Both the cytosolic and mitochondrial forms of the selenoprotein thioredoxin reductase (TrxR) are well documented targets of auranofin.

View Article and Find Full Text PDF

Proteasome inhibitors have been shown to induce cell death in cancer cells by triggering an acute proteotoxic stress response characterized by accumulation of poly-ubiquitinated proteins, ER stress and the production of reactive oxygen species. The aggresome pathway has been described as an escape mechanism from proteotoxicity by sequestering toxic cellular aggregates. Here we show that b-AP15, a small-molecule inhibitor of proteasomal deubiquitinase activity, induces poly-ubiquitin accumulation in absence of aggresome formation.

View Article and Find Full Text PDF

Background: Drug screening for the identification of compounds with anticancer activity is commonly performed using cell lines cultured under normal oxygen pressure and physiological pH. However, solid tumors are characterized by a microenvironment with limited access to nutrients, reduced oxygen supply and acidosis. Tumor hypoxia and acidosis have been identified as important drivers of malignant progression and contribute to multicellular resistance to different forms of therapy.

View Article and Find Full Text PDF

Human cancers are characterized by intrinsic or acquired resistance to apoptosis and evasion of apoptosis has been proposed to contribute to treatment resistance. Bis-benzylidine piperidone compounds, containing α,β-unsaturated carbonyl functionalities, have been extensively documented as being effective in killing apoptosis-resistant cells and to display promising antineoplastic activities in a number of tumor models. We here explored the phenotypic response of colon cancer cells to b-AP15, a bis-benzylidine piperidone previously shown to inhibit the proteasome deubiquitinases (DUBs) USP14 and UCHL5.

View Article and Find Full Text PDF

The MYC proto-oncogene serves as a rheostat coupling mitogenic signaling with the activation of genes regulating growth, metabolism and mitochondrial biogenesis. Here we describe a novel link between mitochondria and MYC levels. Perturbation of mitochondrial function using a number of conventional and novel inhibitors resulted in the decreased expression of MYC mRNA.

View Article and Find Full Text PDF

Maintenance of protein homeostasis is a crucial process for the normal functioning of the cell. The regulated degradation of proteins is primarily facilitated by the ubiquitin proteasome system (UPS), a system of selective tagging of proteins with ubiquitin followed by proteasome-mediated proteolysis. The UPS is highly dynamic consisting of both ubiquitination and deubiquitination steps that modulate protein stabilization and degradation.

View Article and Find Full Text PDF

The presence of quiescent cell populations in solid tumors represents a major challenge for disease eradication. Such cells are generally present in poorly vascularized tumor areas, show limited sensitivity to traditional chemotherapeutical drugs, and tend to resume proliferation, resulting in tumor reseeding and growth. There is growing recognition of the importance of developing therapies that target these quiescent cell populations to achieve long-lasting remission.

View Article and Find Full Text PDF
Article Synopsis
  • VLX1570 is a small molecule that inhibits proteasome deubiquitinase activity, inducing stress and cell death in cancer cells, particularly in pediatric acute lymphoblastic leukemia (ALL).
  • The treatment with VLX1570 leads to an increase in specific proteins linked to stress response and cell regulation while causing harmful protein accumulation without triggering endoplasmic reticulum (ER) stress.
  • Combining VLX1570 with L-asparaginase enhances its cancer-fighting effects, indicating its potential as a new treatment option for ALL.
View Article and Find Full Text PDF

Poorly vascularized areas of solid tumors contain quiescent cell populations that are resistant to cell cycle-active cancer drugs. The compound VLX600 was recently identified to target quiescent tumor cells and to inhibit mitochondrial respiration. We here performed gene expression analysis in order to characterize the cellular response to VLX600.

View Article and Find Full Text PDF