Publications by authors named "Czub S"

Bovine spongiform encephalopathy (BSE) belongs to the group of transmissible spongiform encephalopathies and is associated with the accumulation of a pathological isoform of the host-encoded glycoprotein, designated prion protein (PrP). Classical BSE (C-type) and two atypical BSE forms (L- and H-type) are known, and can be discriminated by biochemical characteristics. The goal of our study was to identify type-specific PrP profiles by using Immunohistochemistry.

View Article and Find Full Text PDF

To reduce the transmission risk of bovine spongiform encephalopathy prions (PrP), specified risk materials (SRM) that can harbour PrP are prevented from entering the feed and food chains. As composting is one approach to disposing of SRM, we investigated the inactivation of PrP in lab-scale composters over 28 days and in bin composters over 106-120 days. Lab-scale composting was conducted using 45 kg of feedlot manure with and without chicken feathers.

View Article and Find Full Text PDF

After oral exposure of cattle with classical bovine spongiform encephalopathy (C-BSE), the infectious agent ascends from the gut to the central nervous system (CNS) primarily via the autonomic nervous system. However, the timeline of this progression has thus far remained widely undetermined. Previous studies were focused on later time points after oral exposure of animals that were already 4 to 6 months old when challenged.

View Article and Find Full Text PDF

Since the discovery of bovine spongiform encephalopathy (BSE), researchers have orally challenged cattle with infected brain material to study various aspects of disease pathogenesis. Unlike most other pathogens, oral BSE challenge does not always result in the expected clinical presentation and pathology. In a recent study, steers were challenged orally with BSE and all developed clinical signs and were sacrificed and tested.

View Article and Find Full Text PDF

Bovine spongiform encephalopathy (BSE) is caused by different prion strains that are discriminated by the molecular characteristics of the pathological prion protein. In 2011, Switzerland reported two presumptive cases of BSE in cattle with a prion protein phenotype different from previously described strains, and it was unclear whether these findings were related to a transmissible disease and have implications on animal and public health. In this study, brain tissues of these cases were inoculated into transgenic mice expressing the bovine prion protein (BoPrP-Tg110) and into cattle.

View Article and Find Full Text PDF

The RT-QuIC technique is a sensitive in vitro cell-free prion amplification assay based mainly on the seeded misfolding and aggregation of recombinant prion protein (PrP) substrate using prion seeds as a template for the conversion. RT-QuIC is a novel high-throughput technique which is analogous to real-time polymerase chain reaction (PCR). Detection of amyloid fibril growth is based on the dye Thioflavin T, which fluoresces upon specific interaction with ᵦ-sheet rich proteins.

View Article and Find Full Text PDF

Atypical BSE is an invariably fatal neurologic disease of cattle caused by misfolded prion proteins with different conformations than those associated with classical BSE. Evidence suggests that these atypical BSE types are sporadic or genetic prion diseases of cattle and the relevance of these diseases, as far as natural transmissibility, is still unknown. Different misfolded prion protein conformations also result in unique biochemical characteristics.

View Article and Find Full Text PDF

Three different types of bovine spongiform encephalopathy (BSE) are known and supposedly caused by distinct prion strains: the classical (C-) BSE type that was typically found during the BSE epidemic, and two relatively rare atypical BSE types, termed H-BSE and L-BSE. The three BSE types differ in the molecular phenotype of the disease associated prion protein, namely the N-terminally truncated proteinase K (PK) resistant prion protein fragment (PrP). In this study, we report and analyze yet another PrP type (PrP), which was found in severely autolytic brain samples of two cows in the framework of disease surveillance in Switzerland in 2011.

View Article and Find Full Text PDF

Chronic wasting disease (CWD) is a fatal prion disease of wild and captive cervids in North America. Prions are infectious agents composed of a misfolded version of a host-encoded protein, termed PrPSc. Infected cervids excrete and secrete prions, contributing to lateral transmission.

View Article and Find Full Text PDF

Transmissible spongiform encephalopathies (TSEs) are infectious, fatal neurodegenerative diseases that affect production animal health, and thus human food safety. Enhanced TSE detection methods mimic the conjectured basis for prion replication, in vitro; biological matrices can be tested for prion activity via their ability to convert recombinant cellular prion protein (PrP) into amyloid fibrils; fluorescent spectra changes of amyloid-binding fluorophores in the reaction vessel detect fibril formation. In vitro PrP conversion techniques have high analytical sensitivity for prions, comparable with that of bioassays, yet no such protocol has gained regulatory approval for use in animal TSE surveillance programs.

View Article and Find Full Text PDF

Bovine spongiform encephalopathy (BSE) is an invariably fatal prion disease of cattle. The identification of the zoonotic potential of BSE prompted safety officials to initiate surveillance testing for this disease. In Canada, BSE surveillance is primarily focused on high risk cattle including animals which are dead, down and unable to rise, diseased or distressed.

View Article and Find Full Text PDF

Transmissible spongiform encephalopathies (TSE) are progressive, neurodegenerative disorders, of which bovine spongiform encephalopathy (BSE) is of special concern because it is infectious and debilitating to humans. The possibility of using fluorescence spectroscopy to screen for BSE in cattle was explored. Fluorescence spectra from the retinas of experimentally infected BSE-positive cattle with clinical disease were compared with those from both sham-inoculated and non-inoculated BSE-negative cattle.

View Article and Find Full Text PDF

The exceptional physio-chemical resistance of prions to established decontamination procedures poses a challenge to assessing the suitability of applied inactivation methods. Prion detection is limited by the sensitivity level of Western blotting or by the cost and time factors of bioassays. In addition, prion detection assays can be limited by either the unique or complex nature of matrices associated with environmental samples.

View Article and Find Full Text PDF

Composting may serve as a practical and economical means of disposing of specified risk materials (SRM) or animal mortalities potentially infected with prion diseases (transmissible spongiform encephalopathies, TSE). Our study investigated the degradation of prions associated with scrapie (PrP(263K)), chronic waste disease (PrP(CWD)), and bovine spongiform encephalopathy (PrP(BSE)) in lab-scale composters and PrP(263K) in field-scale compost piles. Western blotting (WB) indicated that PrP(263K), PrP(CWD), and PrP(BSE) were reduced by at least 2 log10, 1-2 log10, and 1 log10 after 28 days of lab-scale composting, respectively.

View Article and Find Full Text PDF

Prions, the causative agent of chronic wasting disease (CWD) enter the environment through shedding of bodily fluids and carcass decay, posing a disease risk as a result of their environmental persistence. Plants have the ability to take up large organic particles, including whole proteins, and microbes. This study used wheat (Triticum aestivum L.

View Article and Find Full Text PDF

Background: Transmissible Spongiform Encephalopathies (TSEs), including scrapie in sheep, chronic wasting disease (CWD) in cervids, transmissible mink encephalopathy (TME), and bovine spongiform encephalopathy (BSE), are fatal diseases of the nervous system associated with accumulation of misfolded prion protein (PrP(Sc)). Different strains of TSEs exist, associated with different PrP(Sc) conformations that can be probed by the stability assay, in which PrP(Sc) is treated with increasing concentrations of the denaturant guanidine hydrochloride (GdnHCl).

Results: Here, we provide the first comprehensive application of a rapid, protease-free version of the GdnHCl stability assay to brain tissue from cattle experimentally infected with various TSE isolates.

View Article and Find Full Text PDF

The difficulty in developing a diagnostic assay for Creutzfeldt - Jakob disease (CJD) and other transmissible spongiform encephalopathies (TSEs) stems in part from the fact that the infectious agent is an aberrantly folded form of an endogenous cellular protein. This precludes the use of the powerful gene based technologies currently applied to the direct detection of other infectious agents. To circumvent this problem our research objective has been to identify a set of proteins exhibiting characteristic differential abundance in response to TSE infection.

View Article and Find Full Text PDF
Article Synopsis
  • Composting can be an effective method for disposing of specified risk material (SRM) if prion proteins are inactivated, with a study showing significant degradation over 28 days.
  • Both heating cycles during composting achieved temperatures above 50°C, resulting in approximately 63% degradation after the first cycle and 77% after the second.
  • The addition of feathers to compost increased nitrogen levels and improved SRM degradation by 10%, while scrapie prions were undetectable after 14 and 28 days of composting, suggesting effective degradation or complex formation.
View Article and Find Full Text PDF

The preferred method to determine the prevalence of bovine spongiform encephalopathy (BSE) in a country is to use immunology-based rapid-tests. Though these tests are validated to detect C-type BSE disease-associated prion (PrP(sc)), test-specific properties may influence their ability to detect H- and/or L-type BSE PrP(sc), where both are atypical from C-type PrP(sc). Molecular characterization shows atypical BSE PrP(sc) to have a different sensitivity to proteinase activity and different affinities for certain prion-specific antibodies.

View Article and Find Full Text PDF

Chronic wasting disease (CWD) is an invariably fatal neurologic disease that naturally infects mule deer, white tailed deer and elk. The understanding of CWD neurodegeneration at a molecular level is very limited. In this study, microarray analysis was performed to determine changes in the gene expression profiles in six different tissues including brain, midbrain, thalamus, spleen, RPLN and tonsil of CWD-infected elk in comparison to non-infected healthy elk, using 24,000 bovine specific oligo probes.

View Article and Find Full Text PDF

Atypical bovine spongiform encephalopathy (BSE) has recently been identified in Europe, North America, and Japan. It is classified as H-type and L-type BSE according to the molecular mass of the disease-associated prion protein (Pr(PSc)). To investigate the topographical distribution and deposition patterns of immunolabeled Pr(PSc), H-type BSE isolate was inoculated intracerebrally into cattle.

View Article and Find Full Text PDF

Bovine spongiform encephalopathy (BSE) surveillance programs have been employed in numerous countries to monitor BSE prevalence and to protect animal and human health. Since 1999, the European Commission (EC) authorized the evaluation and approval of 20 molecular based tests for the rapid detection of the pathological prion protein (PrP(sc)) in BSE infection. The diagnostic sensitivity, convenience, and speed of these tests have made molecular diagnostics the preferred method for BSE surveillance.

View Article and Find Full Text PDF

Background: Transmissible spongiform encephalopathy diseases are untreatable, uniformly fatal degenerative syndromes of the central nervous system that can be transmitted both within as well as between species. The bovine spongiform encephalopathy (BSE) epidemic and the emergence of a new human variant of Creutzfeldt-Jakob disease (vCJD), have profoundly influenced beef production processes as well as blood donation and surgical procedures. Simple, robust and cost effective diagnostic screening and surveillance tools are needed for both the preclinical and clinical stages of TSE disease in order to minimize both the economic costs and zoonotic risk of BSE and to further reduce the risk of secondary vCJD.

View Article and Find Full Text PDF

Currently approved tests for bovine spongiform encephalopathy (BSE) monitoring in cattle are based on the detection of the disease-related isoform of the prion protein in brain tissue and consequently are only suitable for postmortem diagnosis. Previously, to meet the demand for an antemortem test based on a matrix that would permit easy access and repeated sampling, two-dimensional differential gel electrophoresis (2D-DIGE) was used to perform an unbiased screen of bovine urine. Data demonstrated the altered abundance of particular isoforms of the multifunctional glycoprotein clusterin in urine samples obtained from BSE-infected and age-matched Fleckvieh-Simmental cattle.

View Article and Find Full Text PDF

Tissues from sequential-kill time course studies of bovine spongiform encephalopathy (BSE) were examined to define PrP immunohistochemical labeling forms and map disease-specific labeling over the disease course after oral exposure to the BSE agent at two dose levels. Study was confined to brainstem, spinal cord, and certain peripheral nervous system ganglia-tissues implicated in pathogenesis and diagnosis or disease control strategies. Disease-specific labeling in the brainstem in 39 of 220 test animals showed the forms and patterns observed in natural disease and invariably preceded spongiform changes.

View Article and Find Full Text PDF