This paper presents a simple method of obtaining polyamide 6 fibres modified with acetanilide and copper ions. During the spinning of the fibres with the additives applied, a partial reduction of CuSO to Cu and Cu ions occurs, which is observed as a change in the blue colour of the prepared polyamide granulate to the grey-brown colour of the formed fibres. CuMPs obtained as a result of the salt reduction should give the obtained fibres bioactive properties.
View Article and Find Full Text PDFNanotechnol Sci Appl
December 2021
Introduction: The aim of this interdisciplinary study was to answer the question of whether active antioxidants as graphene oxide (GO), sodium ascorbate, and L-ascorbic acid modify at a molecular and supramolecular level the tissue of pathological amnion and the necrotic eschar degraded in thermal burn. We propose new solutions of modifiers based on GO that will become innovative ingredients to be used in transplants (amnion) and enhance regeneration of epidermis degraded in thermal burn.
Methods: A Nicolet 6700 spectrophotometer with Omnic software and the EasiDiff diffusion accessory were used in FTIR spectroscopic analysis.
The paper presents the results of a study on the preparation of cellulose-based composite fibres (CEL) with graphene oxide addition (GO). Composite fibres (GO/CEL) were prepared via the wet spinning method from CEL solutions in 1-ethyl-3-methylimidazolium acetate (EMIMAc) that contained a nano-addition of GO dispersion in N,N-dimethylformamide (DMF). The GO contents of the composite fibres were 0, 0.
View Article and Find Full Text PDFNanocomposite fibers based on poly(butylene terephthalate) (PBT) and reduced graphene oxide (rGO) were prepared using a method able to disperse graphene in one step into a polymer matrix. The studies were performed for fibers containing four different concentrations of rGO at different take-up velocities. The supermolecular structures of the fibers at the crystallographic and lamellar levels were examined by means of calorimetric and X-ray scattering methods (DSC, WAXS, and SAXS).
View Article and Find Full Text PDFAn effective β-nucleating agent for polypropylene crystallization was obtained by the functionalization of reduced graphene oxide with calcium pimelate. The nucleating ability of the modified reduced graphene oxide (rGO-CP) was confirmed during non-isothermal crystallization. In further examinations, the rGO-CP was used as an additive to modify polypropylene fibers.
View Article and Find Full Text PDFThe alternative method of reducing the flammability of polyethylene terephthalate (PET) fibers, analogous to dyeing of PET fibers with dispersed dyes in a high-temperature bath, was proposed. A commercial organophilic montmorillonite Cloisite15A (C15A) was applied as a flame retardant. The aim of the presented work was to evaluate the effectiveness of the introduced modifier and the improvement of the flame-retardant properties of PET fibers by limiting oxygen index (LOI) and thermogravimetric analysis (TGA) measurements.
View Article and Find Full Text PDFThe paper presents a method of obtaining composite polyacrylonitrile-based (PAN) membranes with the addition of reduced graphene oxide (rGO). The membranes were obtained using phase inversion method from a homogeneous rGO dispersion in a solution of PAN dissolved in N, N-dimethylformamide (DMF). The impact of the amount of rGO addition to the PAN matrix on the physicochemical, structural, transport, and separation properties and on fouling resistance was studied.
View Article and Find Full Text PDFTwo types of cellulose membranes were produced by a classical wet phase inversion method from a solution of the polymer in 1-ethyl-3-methylimidazolium acetate (EMIMAc) by coagulation in water and selected primary alcohols. The first type were membranes made from pure cellulose (CEL). The second type were membranes obtained by adding nanosized graphene oxide (GO) to the cellulose solution.
View Article and Find Full Text PDFSpectrochim Acta A Mol Biomol Spectrosc
February 2019
Proper functioning of living organisms requires controlling the factors which govern the level of oxidative stress in the system, that is presence of free radicals at a given, rather low, level and preventing their excess. In this work it is shown that SA and AA active antioxidants, governing the oxidative stress in the wound, modify standard serum solution as well as burn affected necrotic eschar at the molecular structure level. In the case of incubation of skin fragments in SA and AA, the following findings were reported: modification of serum, that is appearance of low molecular weight oligomer bands in AA and recreation of native serum bands in SA.
View Article and Find Full Text PDF