Gallium nitride-based light-emitting diodes have revolutionized the lighting market by becoming the most energy-efficient light sources. However, the power grid, in example electricity delivery system, is built based on alternating current, which raises problems for directly driving light emitting diodes that require direct current to operate effectively. In this paper, we demonstrate a proof-of-concept device that addresses this fundamental issue - a gallium nitride-based bidirectional light-emitting diode.
View Article and Find Full Text PDFUnderstanding the relation between surface morphology during epitaxy of GaN:Si and its electrical properties is important from both the fundamental and application perspectives. This work evidences the formation of nanostars in highly doped GaN:Si layers with doping level ranging from 5 × 10 to 1 × 10 cm grown by plasma-assisted molecular beam epitaxy (PAMBE). Nanostars are 50-nm-wide platelets arranged in six-fold symmetry around the [0001] axis and have different electrical properties from the surrounding layer.
View Article and Find Full Text PDFWe demonstrate a novel electroluminescence device in which GaN-based μ-LEDs are used to trigger the emission spectra of monolayers of transition metal dichalcogenides, which are deposited directly on the μ-LED surface. A special μ-LED design enables the operation of our structures even within the limit of low temperatures. A device equipped with a selected WSe monolayer flake is shown to act as a stand-alone, electrically driven single-photon source.
View Article and Find Full Text PDFAtomically thin metal adlayers are used as surfactants in semiconductor crystal growth. The role of the adlayer in the incorporation of dopants in GaN is completely unexplored, probably because n-type doping of GaN with Si is relatively straightforward and can be scaled up with available Si atomic flux in a wide range of dopant concentrations. However, a surprisingly different behavior of the Ge dopant is observed, and the presence of atomically thin gallium or an indium layer dramatically affects Ge incorporation, hindering the fabrication of GaN:Ge structures with abrupt doping profiles.
View Article and Find Full Text PDFWe demonstrate electrically pumped III-nitride edge-emitting laser diodes (LDs) with nanoporous bottom cladding grown by plasma-assisted molecular beam epitaxy on c-plane (0001) GaN. After the epitaxy of the LD structure, highly doped 350 nm thick GaN:Si cladding layer with Si concentration of 6·10 cm was electrochemically etched to obtain porosity of 15 ± 3% with pore size of 20 ± 9 nm. The devices with nanoporous bottom cladding are compared to the reference structures.
View Article and Find Full Text PDFThe design of the active region is one of the most crucial problems to address in light emitting devices (LEDs) based on III-nitride, due to the spatial separation of carriers by the built-in polarization. Here, we studied radiative transitions in InGaN-based LEDs with various quantum well (QW) thicknesses-2.6, 6.
View Article and Find Full Text PDFA novel approach to fabricate efficient nitride light-emitting diodes (LEDs) grown on gallium polar surface operating at cryogenic temperatures is presented. We investigate and compare LEDs with standard construction with structures where p-n junction field is inverted through the use of bottom tunnel junction (BTJ). BTJ LEDs show improved turn on voltage, reduced parasitic recombination and increased quantum efficiency at cryogenic temperatures.
View Article and Find Full Text PDFWe have fabricated tunnel-junction InGaN micro-LEDs using plasma-assisted molecular beam epitaxy technology, with top-down processing on GaN substrates. Devices have diameters between 5 µm and 100 µm. All of the devices emit light at 450 nm at a driving current density of about 10.
View Article and Find Full Text PDFTypical methods of doping quantification are based on spectroscopy or conductivity measurements. The spatial dopant distribution assessment with nanometer-scale precision is limited usually to one or two dimensions. Here we demonstrate an approach to detect three-dimensional dopant homogeneity in GaN:Si layers using electrochemical etching (ECE).
View Article and Find Full Text PDFWe show that in a wide InGaN quantum well, placed within an undoped region of the pin diode, a photocurrent in the forward direction is observed. The photocurrent switches to reverse direction when the light intensity is increased and/or photon energy is above the bandgap of the quantum barrier. We propose a model showing that the anomalous photocurrent is due to the fact that when the carriers are pumped into the wide quantum well they cannot recombine until the built-in field is screened.
View Article and Find Full Text PDFRecently, the use of bottom-TJ geometry in LEDs, which achieves N-polar-like alignment of polarization fields in conventional metal-polar orientations, has enabled enhancements in LED performance due to improved injection efficiency. Here, we elucidate the root causes behind the enhanced injection efficiency by employing mature laser diode structures with optimized heterojunction GaN/InGaN/GaN TJs and UID GaN spacers to separate the optical mode from the heavily doped absorbing p-cladding regions. In such laser structures, polarization offsets at the electron blocking layer, spacer, and quantum barrier interfaces play discernable roles in carrier transport.
View Article and Find Full Text PDFWe present the concept, the fabrication processes and the experimental results for materials and optics that can be used for terahertz field-effect transistor detector focal plane arrays. More specifically, we propose 3D printed arrays of a new type - diffractive multi-zone lenses of which the performance is superior to that of previously used mono-zone diffractive or refractive elements and evaluate them with GaN/AlGaN field-effect transistor terahertz detectors. Experiments performed in the 300-GHz atmospheric window show that the lens arrays offer both a good efficiency and good uniformity, and may improve the signal-to-noise ratio of the terahertz field-effect transistor detectors by more than one order of magnitude.
View Article and Find Full Text PDF