Visible and ultraviolet resonance Raman (RR) spectra are reported for Fe(III)(NO) adducts of myoglobin variants with altered polarity in the distal heme pockets. The stretching frequencies of the Fe(III)-NO and N-O bonds, nu(FeN) and nu(NO), are negatively correlated, consistent with backbonding. However, the correlation shifts to lower nu(NO) for variants lacking a distal histidine.
View Article and Find Full Text PDFWe have used low-temperature (77K) resonance Raman (RR) spectroscopy as a probe of the electronic and molecular structure to investigate weak pi-pi interactions between the metal ion-coordinated His imidazoles and aromatic side chains in the second coordination sphere of blue copper proteins. For this purpose, the RR spectra of Met16 mutants of Achromobacter cycloclastes pseudoazurin (AcPAz) with aromatic (Met16Tyr, Met16Trp, and Met16Phe) and aliphatic (Met16Ala, Met16Val, Met16Leu, and Met16Ile) amino acid side chains have been obtained and analyzed over the 100-500cm(-1) spectral region. Subtle strengthening of the Cu(II)-S(Cys) interaction on replacing Met16 with Tyr, Trp, and Phe is indicated by the upshifted (0.
View Article and Find Full Text PDFResonance Raman (RR) spectroscopy and density functional theory (DFT) calculations of oxochromium(IV,V) derivatives of 5,10,15-tris(pentafluorophenyl)corrole (tpfpc) are shown to provide useful information about the relative strength of the metal-oxo bond in high-valent Cr(IV) versus Cr(V) corroles. Isotope labeling of the terminal oxo group with (18)O revealed that the Cr(V)-oxo (perchromyl) stretch of (tpfpc)Cr(V)O vibrates at a frequency of 986 cm(-1) in carbon disulfide, consistent with a triply bonded Cr(V)[triple bond]O unit. In contrast, an acetonitrile solution produced RR scattering that rapidly changed with the number of scans collected and eventually became dominated by an (18)O-sensitive vibration at a significantly higher frequency of 1002 cm(-1).
View Article and Find Full Text PDFMetal-substituted blue copper proteins (cupredoxins) have been successfully used to study the effect of metal-ion identity on their active-site properties, specifically the coordination geometry and metal-ligand bond strengths. In this work, low-temperature (77 K) resonance Raman (RR) spectra of the blue copper protein Alcaligenes xylosoxidans azurin I and its Ni(II) derivative are reported. A detailed analysis of all observed bands is presented and responsiveness to metal substitution is discussed in terms of structural and bonding changes.
View Article and Find Full Text PDFUV-visible, infrared (IR), and resonance Raman (RR) spectra were measured and analyzed for a high-valent molybdenum(V)-oxo complex of 5,10,15-tris[3,5-bis(trifluoromethyl)phenyl]corrole (1) at room temperature. The strength of the metal-oxo bond in 1 was found to be strongly solvent-dependent. Solid-state IR and RR spectra of 1 exhibited the MoVO stretching vibration at nu(MoVO)=969 cm(-1).
View Article and Find Full Text PDFChemical rescue of site-modified amino acids using externally supplied organic molecules represents a powerful method to investigate structure-function relationships in proteins. Here we provide definitive evidence that aryl and alkyl thiolates, reagents typically used for in vitro iron-sulfur cluster reconstitutions, serve as rescue ligands to a site-specifically modified [4Fe-4S](1+,2+) cluster in PsaC, a bacterial dicluster ferredoxin-like subunit of Photosystem I. PsaC binds two low-potential [4Fe-4S](1+,2+) clusters termed F(A) and F(B).
View Article and Find Full Text PDFA copper-containing nitrite reductase from Alcaligenes xylosoxidans NCIMB 11015 has its own unique blue or type 1 copper protein resonance Raman spectrum in the usual Cu-S(Cys) stretching region, nu(Cu-S(Cys)), with a pair of strong peaks at 412 and 420 cm(-1) and a weak peak at 364 cm(-1). The predominantly nu(Cu-S(Cys)) Raman bands at 412, 420, and 364 cm(-1) of the type 1 copper site all shifted to higher frequencies upon binding of nitrite to the type 2 copper site, and the resonance Raman difference spectra progressively intensified with the increments of nitrite ion concentration. Positive support for substrate binding to the type 2 copper is provided by the nu(Cu-S(Cys)) bands in the resonance Raman spectrum of a type 2 copper-depleted enzyme, which is insensitive to the presence of NO2-.
View Article and Find Full Text PDFNickel(II) and cobalt(II) derivatives of the blue copper protein Pseudomonas aeruginosa azurin have been studied by resonance Raman (RR) spectroscopy at liquid-nitrogen temperatures. Vibrational assignments for the observed RR bands of Ni(II)-azurin have been made through a study of (62)Ni-substituted azurin. A comparison of Ni(II)-azurin RR spectra with those of the wild type (Cu-containing) protein showed Ni(II)-S(Cys) stretching vibrations, nu(Ni-S)(Cys), at substantially lower frequencies (approximately 360 versus approximately 400 cm(-1), respectively), indicating that the Ni(II)-S(Cys) bond is much weaker than the corresponding Cu(II)-S(Cys) bond.
View Article and Find Full Text PDFAs part of our efforts to develop the transition metal chemistry of corrolazines, which are ring-contracted porphyrinoid species most closely related to corroles, the vanadium and copper complexes (TBP)(8)Cz(H)V(IV)O (1) and (TBP)(8)CzCu(III) (2) of the ligand octakis(para-tert-butylphenyl)corrolazine [(TBP)(8)Cz] have been synthesized. The coordination behavior, preferred oxidation states, and general redox properties of metallocorrolazines are of particular interest. The corrolazine ligand in 1 was shown to contain a labile proton by acid/base titration and IR spectroscopy, serving as a -2 ligand rather than as the usual -3 donor.
View Article and Find Full Text PDFThe synthesis and characterization of an oxomanganese(V) corrolazine, (TBP)8(Cz)Mn(V)O (2), are reported. This remarkably stable high-valent complex is obtained from the stoichiometric reaction of (TBP)8(Cz)Mn(III) (1) with m-CPBA and is easily purified by standard chromatographic methods on silica gel at room temperature. Complex 2 exhibits a diamagnetic 1H NMR spectrum indicative of a low-spin d2 Mn(V)O species.
View Article and Find Full Text PDFThe electron transfer protein rubredoxin from Clostridium pasteurianum contains an Fe(S-Cys)(4) active site. Mutant proteins C9G, C9A, C42G and C42A, in which cysteine ligands are replaced by non-ligating Gly or Ala residues, have been expressed in Escherichia coli. The C42A protein expresses with a Fe(III)(2)S(2) cluster in place.
View Article and Find Full Text PDFThe resonance Raman (RR) spectra of nitrophorin 1 (NP1) from the saliva of the blood-sucking insect Rhodnius prolixus, in the absence and presence of nitric oxide (NO) and in the presence of cyanide (CN(-)), have been studied. The NP1 displayed RR spectra characteristic of six-coordinate high-spin (6cHS) ferric heme at room temperature and six-coordinate low-spin heme (6cLS) at low temperature (77 K). NO and CN(-) each bind to Fe(III), both ligands forming 6cLS complexes with NP1.
View Article and Find Full Text PDFRedox thermodynamic data provide a detailed insight into control of the reduction potential E degrees' of the [Fe(S-Cys)4] site in rubredoxin. Mutant forms were studied in which specific structural changes were made in both the primary and secondary coordination spheres. Those changes have been probed by resonance Raman spectroscopy.
View Article and Find Full Text PDFCationic mu-oxo V(III) dimers of the type [V2OL4Cl2]2+ (L = 1,10-phenanthroline, 3,4,7,8-tetramethyl-1,10-phenanthroline, 4,7-diphenyl-1,10-phenanthroline; or 2,2'-bipyridine) are shown to interact very strongly with DNA and to lead ultimately to its degradation. Spectroscopic binding studies, electrophoreses, DNA melting temperature experiments, and other tests on the parent 1,10-phenthroline complex all yield results consistent with tight binding. However, the exact nature of the binding--i.
View Article and Find Full Text PDFThe formation of three-dimensional self-assembled monolayers (3-D SAMs) generated by the adsorption of -octadecyl disulfide onto colloidal gold and silver nanoparticles is described. The functionalized nanoparticles were characterized by solubility, transmission electron microscopy, ultraviolet-visible spectroscopy, H nuclear magnetic resonance spectroscopy, surface-enhanced Raman spectroscopy, Fourier transform infrared spectroscopy, and X-ray photoelectron spectroscopy. On gold nanoparticles, this new functionalization method affords crystalline 3-D SAMs that are indistinct from those prepared by the analogous adsorption of -octadecanethiol.
View Article and Find Full Text PDFThe heterobimetallic complex 1, [LV(&mgr;-O)(&mgr;-OAc)(2)MnL] (where L = hydridotris(pyrazolyl)borate), has been synthesized and characterized. X-ray crystal structural analysis of 1 gave the following parameters: C(24)H(29)B(2)N(13)O(5)VMn, Cmc2(1), a = 13.364(2) Å, b = 17.
View Article and Find Full Text PDFThe cDNA encoding the 182 amino acid long precursor stellacyanin from Cucumis sativus was isolated and characterized. The protein precursor consists of four sequence domains: I, a 23 amino acid hydrophobic N-terminal signal peptide with features characteristic of secretory proteins; II, a 109 amino acid copper-binding domain; III, a 26 amino acid hydroxyproline- and serine-rich peptide characteristic of motifs found in the extension family, extracellular structural glycoproteins found in plant cell walls; and IV, a 22 amino acid hydrophobic extension. Maturation of the protein involves posttranslational processing of domains I and IV.
View Article and Find Full Text PDFNickel(II) complexes of cycloalkanoporphyrins (CAPs) bearing a saturated carbon ring of varying size between pyrrole C(beta) and methine bridge carbon atoms are widespread in crude oil and related organic rich sediments. We have synthesized a series of NiCAPs containing meso,beta-ethano (NiCAP5), meso,beta-propano (NiCAP6), and meso,beta-butano (NiCAP7) groups and applied UV-visible absorption and resonance Raman (RR) spectroscopies to investigate the effects of the exocyclic ring size on the porphyrin structure and to establish vibrational CAP marker frequencies for petroporphyrins in fossil fuels. The RR spectra of NiCAPs, excited at or near porphyrin Soret ( approximately 400 nm) and Q (510-580 nm) bands are informative and display a rich array of skeletal and alkyl substituent modes.
View Article and Find Full Text PDFThe biochemical and biophysical properties of the Ala45Ser mutant of the [2Fe-2S] ferredoxin from vegetative cells of the cyanobacterium Anabaena sp. 7120 are described. This novel protein, which incorporates the residue present in many higher plant ferredoxins into the analogous position of a typical cyanobacterial ferredoxin, was prepared to probe the origin of the characteristic spectrochemical and functional differences between the ferredoxins from these two sources.
View Article and Find Full Text PDFResonance Raman (RR) spectra of the non-heme iron protein rubrerythrin from Desulfovibrio vulgaris unequivocally demonstrate the presence of both a rubredoxin-type FeS4 site and a (mu-oxo)diiron(III) cluster. The RR spectra of rubrerythrin excited at 496.5 and 568.
View Article and Find Full Text PDFResonance Raman spectra are reported for hydrogenase I and II from Clostridium pasteurianum. These spectra show overlapping bands with contributions from [4Fe-4S] clusters, known to be present in these enzymes, and from novel FeS centers of hitherto undefined structure. For hydrogenase I there are strong bands at 288 and 394 cm-1, which are seen in [2Fe-2S] proteins and in no other FeS species so far examined.
View Article and Find Full Text PDFThe resonance Raman (RR) spectra of beef heart aconitase and of an air-stable hydrogenase from Desulfuvibrio desulfuricans, as isolated, are characteristic of 3Fe centers. Activation of aconitase by Fe(II) addition converts the RR spectrum to one characteristic of [4Fe-4S]2+ clusters. Analytical data on aconitase, as isolated, confirms the recent finding (Beinert, H.
View Article and Find Full Text PDF