Publications by authors named "Czerkinsky C"

Background: Mucosal antibodies can prevent virus entry and replication in mucosal epithelial cells and therefore virus shedding. Parenteral booster injection of a vaccine against a mucosal pathogen promotes stronger mucosal immune responses following prior mucosal infection compared with injections of a parenteral vaccine in a mucosally naive subject. We investigated whether this was also the case for the BNT162b2 coronavirus disease 2019 (COVID-19) messenger RNA vaccine.

View Article and Find Full Text PDF

Background: The immunogenicity of a two-dose mRNA COVID-19 vaccine regimen is low in kidney transplant (KT) recipients. Here, we provide a thorough assessment of the immunogenicity of a three-dose COVID-19 vaccine regimen in this population.

Methods: We performed a prospective longitudinal study in sixty-one KT recipients given three doses of the BNT162b2 COVID-19 vaccine.

View Article and Find Full Text PDF

is a highly prevalent bacterium causing acute diarrhea and dysentery in developing countries. infections are treated with antibiotics but Shigellae are increasingly resistant to these drugs. Vaccination can be a countermeasure against emerging antibiotic-resistant shigellosis.

View Article and Find Full Text PDF

Potential use of cholera toxin (CT) as a mucosal vaccine adjuvant has been documented in a variety of animal models. However, native CT is highly toxic to be used as a mucosal adjuvant in humans. Here, we demonstrate a new approach to generate a mucosal adjuvant by replacing the B subunit of CT with HIV-1 Tat protein transduction domain (PTD), which efficiently delivers fusion proteins into the cell cytoplasm by unspecific binding to cell surface.

View Article and Find Full Text PDF

Background: Assessing immune response after rotavirus vaccination consists in measuring serum or plasma IgA and IgG antibodies, but these assays provide very little information about the mucosal immune response. Thus the development of assays for detection of mucosal immune response following rotavirus vaccination is essential. We evaluate to assess circulating antibody-secreting cells (ASCs) as a potential means to evaluate mucosal immune responses to rotavirus vaccine.

View Article and Find Full Text PDF

Oral vaccine responsiveness is often lower in children from less developed countries. Childhood malnutrition may be associated with poor immune response to oral vaccines. The present study was designed to investigate whether protein energy malnutrition (PEM) impairs B cell immunity and ultimately reduces oral vaccine efficacy in a mouse model.

View Article and Find Full Text PDF

Background: The final endgame strategy of global polio eradication initiative includes switching from trivalent oral poliovirus vaccines (tOPV) to bivalent oral polio vaccine (bOPV), and introduction of inactivated poliovirus vaccine (IPV). This study compares IPV with tOPV week 39 boost in Indian infants.

Methods: Starting 28 March 2012, we enrolled 372 Indian infant-mother pairs from Kolkata, India in an open-label, block-randomized, controlled trial comparing a 39 week tOPV to an IPV boost among infants immunized with three doses of tOPV.

View Article and Find Full Text PDF

Developing countries are burdened with Shigella diarrhea. Understanding mucosal immune responses associated with natural Shigella infection is important to identify potential correlates of protection and, as such, to design effective vaccines. We performed a comparative analysis of circulating mucosal plasmablasts producing specific antibodies against highly conserved invasive plasmid antigens (IpaC, IpaD20, and IpaD120) and two recently identified surface protein antigens, pan-Shigella surface protein antigen 1 (PSSP1) and PSSP2, common to all virulent Shigella strains.

View Article and Find Full Text PDF

Background: The "gold standard" for assessing mucosal immunity after vaccination with poliovirus vaccines consists in measuring virus excretion in stool after challenge with oral poliovirus vaccine (OPV). This testing is time and resource intensive, and development of alternative methods is a priority for accelerating polio eradication. We therefore evaluated circulating antibody-secreting cells (ASCs) as a potential means to evaluate mucosal immunity to poliovirus vaccine.

View Article and Find Full Text PDF

Since the first licensure of the Sabin oral polio vaccine more than 50 years ago, only eight enteric vaccines have been licensed for four disease indications, and all are given orally. While mucosal vaccines offer programmatically attractive tools for facilitating vaccine deployment, their development remains hampered by several factors: -limited knowledge regarding the properties of the gut immune system during early life; -lack of mucosal adjuvants, limiting mucosal vaccine development to live-attenuated or killed whole virus and bacterial vaccines; -lack of correlates/surrogates of mucosal immune protection; and -limited knowledge of the factors contributing to oral vaccine underperformance in children from developing countries. There are now reasons to believe that the development of safe and effective mucosal adjuvants and of programmatically sound intervention strategies could enhance the efficacy of current and next-generation enteric vaccines, especially in lesser developed countries which are often co-endemic for enteric infections and malnutrition.

View Article and Find Full Text PDF

In developing countries, Shigella is a primary cause of diarrhea in infants and young children. Although antibiotic therapy is an effective treatment for shigellosis, therapeutic options are narrowing due to the emergence of antibiotic resistance. Thus, preventive vaccination could become the most efficacious approach for controlling shigellosis.

View Article and Find Full Text PDF

Because of their large surface area and immunological competence, mucosal tissues are attractive administration and target sites for vaccination. An important characteristic of mucosal vaccination is its ability to elicit local immune responses, which act against infection at the site of pathogen entry. However, mucosal surfaces are endowed with potent and sophisticated tolerance mechanisms to prevent the immune system from overreacting to the many environmental antigens.

View Article and Find Full Text PDF

Effector T cells are described to be primed in the lymph nodes draining the site of immunization and to recirculate to effector sites. Sublingual immunization generates effector T cells able to disseminate to the genital tract. Herein, we report an alternative mechanism that involves the recirculation of antigen-bearing dendritic cells (DCs) in remote lymphoid organs to prime T cells.

View Article and Find Full Text PDF

The enzyme-linked immunospot (ELISPOT) assay was originally developed to enumerate antigen-specific antibody-secreting cells (ASCs), and has subsequently been adapted for various applications, including the detection cytokine-secreting cells. Owing to its exceptionally high sensitivity, the ELISPOT has proven to be especially useful for detecting discrete populations of active cells (e.g.

View Article and Find Full Text PDF

The lack of appropriate animal model for studying protective immunity has limited vaccine development against cholera. Here, we demonstrate a pulmonary cholera model conferred by intranasal administration of mice with live Vibrio cholerae. The bacterial components, but not cholera toxin, caused lethal and acute pneumonia by inducing massive inflammation.

View Article and Find Full Text PDF

Background: Sublingual (s.l.) administration of soluble protein antigens, inactivated viruses, or virus-like particles has been shown to induce broad immune responses in mucosal and extra-mucosal tissues.

View Article and Find Full Text PDF

The female genital mucosa constitutes the major port of entry of sexually transmitted infections. Most genital microbial pathogens represent an enormous challenge for developing vaccines that can induce genital immunity that will prevent their transmission. It is now established that long-lasting protective immunity at mucosal surfaces has to involve local B-cell and T-cell effectors as well as local memory cells.

View Article and Find Full Text PDF

The nonstructural protein 1 (NS1) of influenza A virus (IAV) enables the virus to disarm the host cell type 1 IFN defense system. Mutation or deletion of the NS1 gene leads to attenuation of the virus and enhances host antiviral response making such live-attenuated influenza viruses attractive vaccine candidates. Sublingual (SL) immunization with live influenza virus has been found to be safe and effective for inducing protective immune responses in mucosal and systemic compartments.

View Article and Find Full Text PDF

Objectives: Bacillus Calmette-Guérin (BCG) vaccination has proven to be efficient in immunologically naïve infants; however, it has not been investigated that maternal natural exposure to Mycobacterium and/or BCG vaccine could influence the characteristics of immune responses to BCG in newborns. In this study, we analyzed whether the maternal immune status to M tuberculosis (M tb) can affect neonatal immunity to BCG using a mouse model.

Methods: Neonates were obtained from mice that were previously exposed to live BCG, to live M avium, or to heat-killed M tb H37Rv, and from naïve control mothers.

View Article and Find Full Text PDF

The ability of activated B cells to protect against various experimental autoimmune or allergic diseases makes them attractive for use in cell-based therapies. We describe an efficient way to generate B cells with strong suppressive functions by incubating naive B cells with a relevant Ag conjugated to cholera toxin B subunit (CTB). This allows most B cells, irrespective of BCR, to take up and present Ag and induces their expression of latency-associated polypeptide (LAP)/TGF-β and after adoptive transfer also their production of IL-10.

View Article and Find Full Text PDF

Background: The ectodomain of matrix protein 2 (M2e) of influenza A virus is a rationale target antigen candidate for the development of a universal vaccine against influenza as M2e undergoes little sequence variation amongst human influenza A strains. Vaccine-induced M2e-specific antibodies (Abs) have been shown to display significant cross-protective activity in animal models. M2e-based vaccine constructs have been shown to be more protective when administered by the intranasal (i.

View Article and Find Full Text PDF

The Global Polio Eradication Initiative (GPEI) currently based on use of oral poliovirus vaccine (OPV) has identified suboptimal immunogenicity of this vaccine as a major impediment to eradication, with a failure to induce protection against paralytic poliomyelitis in certain population segments in some parts of the world. The Mucosal Immunity and Poliovirus Vaccines: Impact on Wild Poliovirus Infection, Transmission and Vaccine Failure conference was organized to obtain a better understanding of the current status of global control of poliomyelitis and identify approaches to improve the immune responsiveness and effectiveness of the orally administered poliovirus vaccines in order to accelerate the global eradication of paralytic poliomyelitis.

View Article and Find Full Text PDF