Nanomedicine compounds containing nanoparticles, such as iron oxides and gold, have been demonstrated to be effective in promoting different magnitudes of interaction with amyloid β fibrils, of which disintegrating or inhibiting effects are of great importance to treating fibrillary aggregation-induced neurological disorders such as Alzheimer's disease. This research herein studies the interaction between lysozyme amyloid fibrils, a type of fibers derived from hen egg white lysozyme, and Fe₃O₄ magnetic nanoparticles (MNPs) of an assorted diameter sizes of 5 nm, 10 nm and 20 nm, using atomic force microscopy (AFM). Specifically, the effects of the sizes of negatively charged MNPs on the resultant amyloid fibrillary mixture was investigated.
View Article and Find Full Text PDFIn this research, the dynamic process of aggregation that forms microflower morphology in solution of lysozyme amyloid fibrils doped with spherical or spindle-like magnetic nanoparticles during the process of drying as well as their final microstructures were investigated. The prepared lysozyme amyloid fibrils as well as their mixtures with in-lab synthesized magnetic particles, which were prepared by adding the nanoparticles to the fibrils solution after the process of fibrillation was done, were characterized using brightfield trans-illumination-mode optical microscope, atomic force microscopy (AFM) and scanning electron microscope (SEM). Brightfield optical imaging bases upon photoabsorptive property of the fibrils-nanoparticle composites clearly reveals the morphological features in microscale, and additionally, for the in vivo, live action of the time-dependent process of self-assembly of such composites composed of fibrillary structure incorporated with magnetic particles was optically elucidated at ambient temperature.
View Article and Find Full Text PDF