J Assoc Res Otolaryngol
February 2014
A fundamental challenge for sensory systems is to recognize natural stimuli despite stimulus variations. A compelling example occurs in speech, where the auditory system can recognize words spoken at a wide range of speeds. To date, there have been more computational models for time-warp invariance than experimental studies that investigate responses to time-warped stimuli at the neural level.
View Article and Find Full Text PDFThe temporal precision of a neuron's spiking can be characterized by calculating its "jitter," defined as the standard deviation of the timing of individual spikes in response to repeated presentations of a stimulus. Sub-millisecond jitters have been measured for neurons in a variety of experimental systems and appear to be functionally important in some instances. We have investigated how modifying a neuron's maximal conductances affects jitter using the leaky integrate-and-fire (LIF) model and an eight-conductance Hodgkin-Huxley type (HH8) model.
View Article and Find Full Text PDFWhy is spatial tuning in auditory cortex weak, even though location is important to object recognition in natural settings? This question continues to vex neuroscientists focused on linking physiological results to auditory perception. Here we show that the spatial locations of simultaneous, competing sound sources dramatically influence how well neural spike trains recorded from the zebra finch field L (an analog of mammalian primary auditory cortex) encode source identity. We find that the location of a birdsong played in quiet has little effect on the fidelity of the neural encoding of the song.
View Article and Find Full Text PDFJ Assoc Res Otolaryngol
February 2012
The auditory system is capable of robust recognition of sounds in the presence of competing maskers (e.g., other voices or background music).
View Article and Find Full Text PDFThe neural mechanisms that enable recognition of spiking patterns in the brain are currently unknown. This is especially relevant in sensory systems, in which the brain has to detect such patterns and recognize relevant stimuli by processing peripheral inputs; in particular, it is unclear how sensory systems can recognize time-varying stimuli by processing spiking activity. Because auditory stimuli are represented by time-varying fluctuations in frequency content, it is useful to consider how such stimuli can be recognized by neural processing.
View Article and Find Full Text PDFStudies of auditory processing in awake, behaving songbirds allow for the possibility of new classes of experiments, including those involving attention and plasticity. Detecting and determining the significance of plasticity, however, requires assessing the intrinsic variability in neural responses. Effects such as rapid plasticity have been investigated in the auditory system through the use of the spectrotemporal receptive field (STRF), a characterization of the properties of sounds to which a neuron best responds.
View Article and Find Full Text PDFJ Neurophysiol
January 2009
Object recognition is a task of fundamental importance for sensory systems. Although this problem has been intensively investigated in the visual system, relatively little is known about the recognition of complex auditory objects. Recent work has shown that spike trains from individual sensory neurons can be used to discriminate between and recognize stimuli.
View Article and Find Full Text PDFIntensity variation poses a fundamental problem for sensory discrimination because changes in the response of sensory neurons as a result of stimulus identity, e.g., a change in the identity of the speaker uttering a word, can potentially be confused with changes resulting from stimulus intensity, for example, the loudness of the utterance.
View Article and Find Full Text PDFJ Neurophysiol
September 2007
Proprioception in the first two joints of crustacean limbs is mediated by chordotonal organs that utilize spike-mediated information coding and transmission and by nonspiking proprioceptive afferents that use graded transmission at information rates in excess of 2,500 bits/s. Chordotonal organs operate in parallel with the graded receptors, but the information rates of the spiking chordotonal afferents have not been previously determined. Lower-bound estimates of chordotonal afferent information rates were calculated using stimulus reconstruction, which assumes linear encoding of the stimulus.
View Article and Find Full Text PDFThe neuropeptide allatostatin decreases the spike rate in response to time-varying stretches of two different crustacean mechanoreceptors, the gastropyloric receptor 2 in the crab Cancer borealis and the coxobasal chordotonal organ (CBCTO) in the crab Carcinus maenas. In each system, the decrease in firing rate is accompanied by an increase in the timing precision of spikes triggered by discrete temporal features in the stimulus. This was quantified by calculating the standard deviation or "jitter" in the times of individual identified spikes elicited in response to repeated presentations of the stimulus.
View Article and Find Full Text PDFStudies of release under physiological conditions provide more direct data about the identity of neuromodulatory signaling molecules than studies of tissue localization that cannot distinguish between processing precursors and biologically active neuropeptides. We have identified neuropeptides released by electrical stimulation of nerves that contain the axons of the modulatory projection neurons to the stomatogastric ganglion of the crab, Cancer borealis. Preparations were bathed in saline containing a cocktail of peptidase inhibitors to minimize peptide degradation.
View Article and Find Full Text PDFThe crustacean stomatogastric ganglion (STG) is modulated by both locally released neuroactive compounds and circulating hormones. This study presents mass spectrometric characterization of the complement of peptide hormones present in one of the major neurosecretory structures, the pericardial organs (POs), and the detection of neurohormones released from the POs. Direct peptide profiling of Cancer borealis PO tissues using matrix-assisted laser desorption/ionization (MALDI) time-of-flight (TOF) mass spectrometry (MS) revealed many previously identified peptides, including proctolin, red pigment concentrating hormone (RPCH), crustacean cardioactive peptide (CCAP), several orcokinins, and SDRNFLRFamide.
View Article and Find Full Text PDFNeuromodulators can modify the magnitude and kinetics of the response of a sensory neuron to a stimulus. Six neuroactive substances modified the activity of the gastropyloric receptor 2 (GPR2) neuron of the stomatogastric nervous system (STNS) of the crab Cancer borealis during muscle stretch. Stretches were applied to the gastric mill 9 (gm9) and the cardio-pyloric valve 3a (cpv3a) muscles.
View Article and Find Full Text PDFConventionally, the parameters of neuronal models are hand-tuned using trial-and-error searches to produce a desired behavior. Here, we present an alternative approach. We have generated a database of about 1.
View Article and Find Full Text PDF