Exposure to general anesthetics can adversely affect brain development, but there is little study of sedative agents used in intensive care that act via similar pharmacologic mechanisms. Using quantitative immunohistochemistry and neurobehavioral testing and an established protocol for murine sedation, we tested the hypothesis that lengthy, repetitive exposure to midazolam, a commonly used sedative in pediatric intensive care, interferes with neuronal development and subsequent cognitive function via actions on the mechanistic target of rapamycin (mTOR) pathway. We found that mice in the midazolam sedation group exhibited a chronic, significant increase in the expression of mTOR activity pathway markers in comparison to controls.
View Article and Find Full Text PDFPatients who have undergone surgery in early life may be at elevated risk for suffering neuropathic pain in later life. The risk factors for this susceptibility are not fully understood. Here, we used a mouse chronic pain model to test the hypothesis that early exposure to the general anesthetic (GA) Isoflurane causes cellular and molecular alterations in dorsal spinal cord (DSC) and dorsal root ganglion (DRG) that produces a predisposition to neuropathic pain via an upregulation of the mammalian target of the rapamycin (mTOR) signaling pathway.
View Article and Find Full Text PDFIn March 2019, SmartTots, a public-private partnership between the US Food and Drug Administration and the International Anesthesia Research Society, hosted a meeting attended by research experts, anaesthesia journal editors, and government agency representatives to discuss the continued need for rigorous preclinical research and the importance of establishing reporting standards for the field of anaesthetic perinatal neurotoxicity. This group affirmed the importance of preclinical research in the field, and welcomed novel and mechanistic approaches to answer some of the field's largest questions. The attendees concluded that summarising the benefits and disadvantages of specific model systems, and providing guidance for reporting results, would be helpful for designing new experiments and interpreting results across laboratories.
View Article and Find Full Text PDFBackground: Early postnatal exposure to general anesthetics may interfere with brain development. We tested the hypothesis that isoflurane causes a lasting disruption in myelin development via actions on the mammalian target of rapamycin pathway.
Methods: Mice were exposed to 1.
Dysbiosis of the intestinal microbiota has been shown to result in altered immune responses and increased susceptibility to infection; as such, the state of the intestinal microbiome may have profound implications in the perioperative setting. In this first-in-class study, we used 16s ribosomal RNA sequencing and analysis in a mouse model of general anesthesia to investigate the effects of volatile anesthetics on the diversity and composition of the intestinal microbiome. After 4-hour exposure to isoflurane, we observed a decrease in bacterial diversity.
View Article and Find Full Text PDFJ Neurosurg Anesthesiol
October 2016
Background: Early postnatal exposure to general anesthetic agents causes a lasting impairment in learning and memory in animal models. One hypothesis to explain this finding is that exposure to anesthetic agents during critical points in neural development disrupts the formation of brain circuitry. Here, we explore the effects of sevoflurane on the neuronal growth cone, a specialization at the growing end of axons and dendrites that is responsible for the targeted growth that underlies connectivity between neurons.
View Article and Find Full Text PDFBackground: There is growing concern that pediatric exposure to anesthetic agents may cause long-lasting deficits in learning by impairing brain development. Most studies to date on this topic have focused on the direct effects of anesthetics on developing neurons. Relatively little attention has been paid to possible effects of anesthetics on astrocytes, a glial cell type that plays an important supporting role in neuronal development.
View Article and Find Full Text PDFThe results of several retrospective clinical studies suggest that exposure to anesthetic agents early in life is correlated with subsequent learning and behavioral disorders. Although ongoing prospective clinical trials may help to clarify this association, they remain confounded by numerous factors. Thus, some of the most compelling data supporting the hypothesis that a relatively short anesthetic exposure can lead to a long-lasting change in brain function are derived from animal models.
View Article and Find Full Text PDFJ Neurosurg Anesthesiol
October 2012
Numerous studies from the clinical and preclinical literature indicate that general anesthetic agents have toxic effects on the developing brain, but the mechanism of this toxicity is still unknown. Previous studies have focused on the effects of anesthetics on cell survival, dendrite elaboration, and synapse formation, but little attention has been paid to possible effects of anesthetics on the developing axon. Using dissociated mouse cortical neurons in culture, we found that isoflurane delays the acquisition of neuronal polarity by interfering with axon specification.
View Article and Find Full Text PDFJ Neurosurg Anesthesiol
October 2012
Every year millions of children are treated with anesthetics and sedatives to alleviate pain and distress during invasive procedures. Accumulating evidence suggests the possibility for deleterious effects on the developing brain. This has led to significant concerns among pediatric anesthesiologists and to the formation of the Pediatric Anesthesia NeuroDevelopmental Assessment (PANDA) group and its biannual symposium.
View Article and Find Full Text PDF