Objectives: The aim of this study was to evaluate the role of angiotensin II (AT-II) and its main mediator, transforming growth factor beta 1 (TGF-β1), in the development of feline renal fibrosis.
Methods: Expression of marker genes indicating epithelial-to-mesenchymal transition (EMT), profibrotic mediators and matricellular proteins was measured in feline kidney epithelial cells (Crandell Rees feline kidney [CRFK] cells) after incubation with AT-II and/or TGF-β1.
Results: Cells incubated with TGF-β1 or the combination of TGF-β1 with AT-II showed clear EMT with more stretched fibroblastic cells, whereas the cells incubated without TGF-β1 and AT-II (control) showed more epithelial cells.
In contrast to humans and dogs, diazepam has been reported to induce severe hepatic side effects in cats, particularly after repeated dosing. With the aim to elucidate the mechanisms underlying this apparent sensitivity of cats to drug-induced liver injury, in a series of in vitro experiments, the feline-specific biotransformation of diazepam was studied with liver microsomes obtained from cats and dogs and the possible inhibition of the bile salt export pump (Bsep) was measured in isolated membrane vesicles overexpressing feline and canine Bsep. In line with previous in vivo studies, the phase I metabolites nordiazepam, temazepam and oxazepam were measurable in microsomal incubations, although enzyme velocity of demethylases and hydroxylases differed significantly between cats and dogs.
View Article and Find Full Text PDFBackground: The bile salt export pump (BSEP/ABCB11) is the primary transporter for the excretion of bile acids from hepatocytes into bile. In human, inhibition of BSEP by drugs has been related to drug-induced cholestasis and subsequent cytotoxic effects. The role of BSEP in canine and feline liver diseases has not been studied in detail, but the same mechanism of inhibition by drugs as in humans could play a role in veterinary medicine.
View Article and Find Full Text PDF