Publications by authors named "Cyrille Rochas"

We studied the microstructure of physical chitosan hydrogels formed by the neutralization of chitosan aqueous solutions highlighting the structural gradients within thick gels (up to a thickness of 16 mm). We explored a high polymer concentrations range (C ≥ 1.0% w/w) with different molar masses of chitosan and different concentrations of the coagulation agent.

View Article and Find Full Text PDF

A series of β-cyclodextrin (βCD) amphiphilic derivatives with varying degrees of substitution were prepared by acylating βCDs on their secondary face using thermolysin to catalyze the transesterification. After dissolution in acetone, the βCD-C derivatives (n = 8, 10, 12, 14) were nanoprecipitated in water, where they self-organized into structured particles that were characterized using cryo-transmission electron microscopy (cryo-TEM) images and small-angle X-ray scattering (SAXS) data. Two types of morphologies and ultrastructures were observed depending on the total degree of substitution (TDS) of the parent derivative.

View Article and Find Full Text PDF

The control over the crystallinity of chitosan and chitosan/ovalbumin films can be achieved via an appropriate balance of the hydrophilic/hydrophobic interactions during the film formation process, which then controls the release kinetics of ovalbumin. Chitosan films were prepared by solvent casting. The presence of the anhydrous allomorph can be viewed as a probe of the hydrophobic conditions at the neutralization step.

View Article and Find Full Text PDF

The ultrastructural transformation of wood cellulose crystals by hydrothermal treatment was followed by synchrotron and standard X-ray scattering experiments. When treated at 200 °C for 2 h in the presence of an excess of water, a significant sharpening of the equatorial reflections of crystalline cellulose was observed, and the average crystallite size, estimated from the X-ray line broadening, was twice as large as that of untreated wood cellulose. During the treatment, the cellulose structure was converted from the native monoclinic form of cellulose I into a pseudo-orthorhombic system, coined as cellulose I', a transformation occurring only with an excess of water, above 180 °C and after more than half an hour.

View Article and Find Full Text PDF

We show that, while the gelation of colloidal silica proceeds much faster in the presence of added KCl than NaCl, the final gels are very similar in structure and properties. We have studied the gelation process by visual inspection and by small angle X-ray scattering for a range of salt and silica particle concentrations. The characteristic times of the early aggregation process and the formation of a stress-bearing structure with both salts are shown to collapse onto master curves with single multiplicative constants, linked to the stability ratio of the colloidal suspensions.

View Article and Find Full Text PDF

Crystalline chitosan nanofibril networks were prepared, preserving the native structural packing and the polymer high molecular weight. The fine microstructure of the nanomaterial, obtained by mild hydrolysis of chitosan (CHI), was characterized by using synchrotron small- and wide-angle X-ray scattering (SAXS and WAXS), transmission electron microscopy (TEM) and electron diffraction. Hydrolysis of chitosan yielded a network of crystalline nanofibrils, containing both allomorphs of chitosan: hydrated and anhydrous.

View Article and Find Full Text PDF

For many important applications, the performance of polymer-anisotropic particle nanocomposite materials strongly depends on the orientation of the nanoparticles. Using the very peculiar magnetic properties of goethite (α-FeOOH) nanorods, we produced goethite-poly(hydroxyethyl methacrylate) nanocomposites in which the alignment direction and the level of orientation of the nanorods could easily be tuned by simply adjusting the intensity of a magnetic field applied during polymerization. Because the particle volume fraction was kept low (1-5.

View Article and Find Full Text PDF

We investigated the spinning of hydroalcoholic chitosan solutions. The dope composition was optimized in order to obtain a continuous alcogel fiber by water evaporation on heating the extruded hydroalcoholic solution. This alcogel fiber was then neutralized in aqueous alkali baths and washed in water to eliminate the residual alcohol and salts before final drying.

View Article and Find Full Text PDF

We have recently shown that thermolysine, a protease enzyme obtained from Bacillus thermoproteolyticus rokko , can be used to trigger the gelation of FEFK (F, phenylalanine; E, glutamic acid; K, lysine) tetrapeptides through reverse hydrolysis and formation of longer peptide sequences, mainly octapeptides, that self-assemble readily. In this article we investigate the effect of enzyme concentration on the morphology and properties of enzymatically triggered peptide hydrogels using HPLC, FTIR, real-time SAXS, TEM, and shear rheology. We have shown that the enzyme concentration, Cenz, does not affect the final composition of the samples.

View Article and Find Full Text PDF

The response of anisotropic pigment particle suspensions to externally applied electric fields has been explored for possible application in reflective display technologies. Three different types of pigment particle were suspended in dodecane, using a polymeric stabilizer, and showed Schlieren textures between crossed polarizers at high concentrations (greater than 25-30 wt%), indicating the formation of colloidal nematic phases. Orientational order parameters were determined by X-ray scattering, and the influence of polydispersity on the values is discussed.

View Article and Find Full Text PDF

The present paper describes the orientational control of 10 nm scale cylinders in sugar-based block copolymer thin films by simply varying the composition of the annealing co-solvent. The affinity of the block copolymer to the solvent vapor could be systematically adjusted in this way.

View Article and Find Full Text PDF

To date, the feature size of microphase separation in block copolymers has been downsizing to 10 nm scale. However, morphological control for such a small feature is still a challenging task. The present Letter discusses a phase transition in a natural/synthetic "hybrid" block copolymer system based on an oligosaccharide and poly(ε-caprolactone) via thermal annealing.

View Article and Find Full Text PDF

Block copolymers demonstrate potential for use in next-generation lithography due to their ability to self-assemble into well-ordered periodic arrays on the 3-100 nm length scale. The successful lithographic application of block copolymers relies on three critical conditions being met: high Flory-Huggins interaction parameters (χ), which enable formation of <10 nm features, etch selectivity between blocks for facile pattern transfer, and thin film self-assembly control. The present paper describes the synthesis and self-assembly of block copolymers composed of naturally derived oligosaccharides coupled to a silicon-containing polystyrene derivative synthesized by activators regenerated by electron transfer atom transfer radical polymerization.

View Article and Find Full Text PDF

Synchrotron small angle X-ray scattering measurements on water and alkaline bromine aqueous solutions (XBr, with X = Li, Rb, or Cs) were carried out from ambient to supercritical conditions. The temperature was increased from 300 to 750 K along several isobars between 24 and 35 MPa. The correlation length and the structure factor were extracted from the data following the Ornstein-Zernike formalism.

View Article and Find Full Text PDF

Agarose hydrogels filled with cellulose nanowhiskers were strained in uniaxial stretching under different humidity conditions. The orientation of the cellulose whiskers was examined before and after testing with an X-ray laboratory source and monitored in situ during loading by synchrotron X-ray diffraction. The aim of this approach was to determine the process parameters for reorienting the cellulose nanowhiskers toward a preferential direction.

View Article and Find Full Text PDF

The different steps of the self-assembly in solution of several 2D-hexagonal silica nanostructured SBA-15 materials have been investigated by SAXS and SANS in situ experiments. Unique quantitative information about the shape and size evolution upon time of the micellar aggregates throughout the self-assembly process is obtained using a complete model that describes well the scattering data for the various synthesis conditions. In all cases, before the precipitation of the material, the micelles shape changes from spherical to rod-like, where the structure of the rod-like micelles is linked to the structure of the 2D-hexagonal precipitated material.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates the micellar structure of Pluronic P123, a block polymer used in synthesizing ordered mesoporous materials like SBA-15, through techniques such as SANS (Small-Angle Neutron Scattering) and SAXS (Small-Angle X-ray Scattering).
  • The researchers developed a core-shell spherical model to quantify and describe micelle characteristics, including size, shape, and composition, under various synthesis conditions.
  • They also explored how factors like temperature, pH, acidity, and the introduction of swelling agents (like toluene and TMB) affect the micellar structure and behavior.
View Article and Find Full Text PDF

In this article, we present a general overview of the organization of colloidal charged clay particles in aqueous suspension by studying different natural samples with different structural charges and charge locations. Small-angle X-ray scattering experiments (SAXS) are first used to derive swelling laws that demonstrate the almost perfect exfoliation of clay sheets in suspension. Using a simple approach based on geometrical constraints, we show that these swelling laws can be fully modeled on the basis of morphological parameters only.

View Article and Find Full Text PDF

This paper discusses the self-assembly of rod-coil amylose-b-polystyrene (Mal-b-PS) block copolymer thick and thin films. The nano-organization falls in an interdomain spacing d of about 10 nm, much smaller than flexible-flexible petrol block copolymer systems. Additionally, hydrogen-bonding interactions between carbohydrate rods (amylose) and 4',4-bipyridine (bipy) molecules induces phase transitions.

View Article and Find Full Text PDF

Physical chitosan hydrogels are potential biomaterials for several biomedical applications, such as wound healing, tissue repair, and drug delivery. Controlling the microstructural organization of chitosan gels is one of the keys for monitoring the physical, mechanical, and biological properties. As a result, the main objective of the present work was to explore the microstructural organization of chitosan hydrogels in relation with the processing conditions of gelation.

View Article and Find Full Text PDF

The B-->A phase transition in native starch granules and spherocrystals prepared from DP 20-40 synthetic amylose chains was investigated in situ at intermediate moisture content (20-30%) by wide-angle synchrotron X-ray scattering, using a temperature-controlled pressure cell. The transition in native starch was monitored at hydrostatic pressures of 1.6-11.

View Article and Find Full Text PDF

The structural organization of chitosan, a cationic polyelectrolyte, in aqueous solutions of high ionic strength, is investigated by quasi-elastic light scattering and wet scanning transmission electron microscopy. The formation of submicrometric chain aggregates driven by hydrophobic interactions is evidenced. These heterogeneities are at the core of the multiscale morphology of physical hydrogels processed from this polysaccharide.

View Article and Find Full Text PDF

A method allowing the evaluation of the solvophilic/solvophobic character of polyelectrolytes from their conformation in solution is discussed. Analyzed systems are salt-free aqueous solutions of natural copolysaccharides with controlled chemical structures. Small-angle X-ray scattering diagrams revealed their conformation by the "polyelectrolyte peak".

View Article and Find Full Text PDF

Ca-alginate materials were studied by small-angle X-ray scattering (SAXS) at different steps of conversion from gel to aerogel in order to determine the relation between the polymer organization at the nanoscale in the gels and the final dry aerogel. In all cases, i.e.

View Article and Find Full Text PDF

The shape and size distribution of crystalline nanoparticles resulting from the sulfuric acid hydrolysis of cellulose from cotton, Avicel, and tunicate were investigated using transmission electron microscopy (TEM) and atomic force microscopy (AFM) as well as small- and wide-angle X-ray scattering (SAXS and WAXS). Images of negatively stained and cryo-TEM specimens showed that the majority of cellulose particles were flat objects constituted by elementary crystallites whose lateral adhesion was resistant against hydrolysis and sonication treatments. Moreover, tunicin whiskers were described as twisted ribbons with an estimated pitch of 2.

View Article and Find Full Text PDF