Purpose: The use of anti-B-cell maturation antigen (BCMA) chimeric antigen receptor T-cell (CART) therapy for AL amyloidosis (AL) is limited owing to patient frailty. HBI0101 anti-BCMA CART was the first proof of concept for its applicability to AL. This report addresses the AL patient cohort treated to date within the phase Ia/Ib clinical trial (ClinicalTrials.
View Article and Find Full Text PDFIntroduction: TGFβ is a major immunoinhibitory factor present in the microenvironment of solid tumors. Various cancer types acquire the ability to overexpress TGFβ to escape immune response. Specifically, TGFβ dampens cytotoxic T cell activity, and its presence has been correlated with tumor invasion and poor prognosis.
View Article and Find Full Text PDFCancer exploits different mechanisms to escape T-cell immunosurveillance, including overexpression of checkpoint ligands, secretion of immunosuppressive molecules, and aberrant glycosylation. Herein, we report that IFNγ, a potent immunomodulator secreted in the tumor microenvironment, can induce α2,6 hypersialylation in cancer cell lines derived from various histologies. We focused on Siglec-9, a receptor for sialic acid moieties, and demonstrated that the Siglec-9+ T-cell population displayed reduced effector function.
View Article and Find Full Text PDFBackground: T cells play a central role in the antitumor response. However, they often face numerous hurdles in the tumor microenvironment, including the scarcity of available essential metabolites such as glucose and amino acids. Moreover, cancer cells can monopolize these resources to thrive and proliferate by upregulating metabolite transporters and maintaining a high metabolic rate, thereby outcompeting T cells.
View Article and Find Full Text PDFHBI0101 is an academic chimeric antigen receptor T-cell (CART)-targeted to B-cell maturation antigen (BCMA) for the treatment of relapsed and refractory multiple myeloma (R/RMM) and light chain amyloidosis. Herein, we present the phase 1b/2 results of 50 heavily pretreated patients with R/RMM dosed with 800 × 106 CART cells. Inclusion criteria were relatively permissive (i.
View Article and Find Full Text PDFHaematologica
July 2023
Purpose: AL amyloidosis (AL) treatments are generally based on those employed for multiple myeloma. Anti-B-cell maturation antigen (BCMA) chimeric antigen receptor T (CART)-cell therapy, already approved for multiple myeloma, might be too toxic for patients with AL.
Experimental Design: Here we describe the ex vivo applicability of a novel in-house, academic anti-BCMA CAR construct on AL primary cells, as well as the safety and efficacy in 4 patients with relapsed/refractory (RR) primary AL, treated in a phase I clinical trial (NCT04720313).
Genetically engineered T cells are a powerful new modality for cancer immunotherapy. However, their clinical application for solid tumors is challenging, and crucial knowledge on cell functionality in vivo is lacking. Here, we fabricated a nanoprobe composed of dendrimers incorporating a calcium sensor and gold nanoparticles, for dual-modal monitoring of engineered T cells within a solid tumor.
View Article and Find Full Text PDFChimeric antigen receptor (CAR) T-cell based immunotherapy has become a promising treatment mainly for hematological malignancies. Following the major success of CD19-targeted CAR, new potential targets for other malignancies are required. As such, B-cell maturation antigen (BCMA) is an attractive tumor-associated antigen to be targeted in multiple myeloma (MM).
View Article and Find Full Text PDFAs an important part of the immune system, T lymphocytes exhibit undoubtedly an important role in targeting and eradicating cancer. However, despite these characteristics, their natural antitumor response may be insufficient. Numerous clinical trials in terminally ill cancer patients testing the design of novel and efficient immunotherapeutic approaches based on the adoptive transfer of autologous tumor-specific T lymphocytes have shown encouraging results.
View Article and Find Full Text PDFBackground: Many countries are experiencing a resurgence of COVID-19, driven predominantly by the delta (B.1.617.
View Article and Find Full Text PDFNatural killer (NK)-cell-based immunotherapy is emerging as an attractive approach for cancer treatment. However, to facilitate and expedite clinical implementation, important questions must be answered regarding the functionality and trafficking patterns of the transferred cells. We have recently developed a noninvasive cell-tracking technique, based on gold nanoparticles (GNPs) as cell-labeling and contrast agents for whole-body computed tomography (CT) imaging.
View Article and Find Full Text PDFNeoantigens are now recognized drivers of the antitumor immune response. Recurrent neoantigens, shared among groups of patients, have thus become increasingly coveted therapeutic targets. Here, we report on the data-driven identification of a robustly presented, immunogenic neoantigen that is derived from the combination of HLA-A*01:01 and RAS.
View Article and Find Full Text PDFCD45, the predominant transmembrane tyrosine phosphatase in leukocytes, is required for the efficient induction of T cell receptor signaling and activation. We recently reported that the CD45-intracellular signals in peripheral blood mononuclear cells (PBMCs) of triple negative breast cancer (TNBC) patients are inhibited. We also reported that C24D, an immune modulating therapeutic peptide, binds to CD45 on immune-suppressed cells and resets the functionality of the immune system via the CD45 signaling pathway.
View Article and Find Full Text PDFBreast cancer subtypes have not shown significant response to current immunomodulatory therapies. Although most subtypes are treatable, triple negative breast cancer (TNBC), an aggressive highly metastatic cancer, comprising 10-20% of breast cancers, remains an unmet medical need. New strategies are needed in order to overcome flaws in the responsiveness to current TNBC therapies.
View Article and Find Full Text PDFChimeric antigen receptor (CAR) T-cells treatment demonstrate the increasing and powerful potential of immunotherapeutic strategies, as seen mainly for hematological malignancies. Still, efficient CAR-T cell approaches for the treatment of a broader spectrum of tumors are needed. It has been shown that cancer cells can implement strategies to evade immune response that include the expression of inhibitory ligands, such as hypersialylated proteins (sialoglycans) on their surface.
View Article and Find Full Text PDFBackground: Tumors can employ different mechanisms to evade immune surveillance and function. Overexpression of co-inhibitory ligands that bind to checkpoint molecules on the surface of T-cells can greatly impair the function of latter. TIGIT (T cell immunoreceptor with Ig and ITIM domains) is such a co-inhibitory receptor expressed by T and NK cells which, upon binding to its ligand (e.
View Article and Find Full Text PDFCytotoxic T cells are essential mediators of protective immunity to viral infection and malignant tumours and are a key target of immunotherapy approaches. However, prolonged exposure to cognate antigens often attenuates the effector capacity of T cells and limits their therapeutic potential. This process, known as T cell exhaustion or dysfunction, is manifested by epigenetically enforced changes in gene regulation that reduce the expression of cytokines and effector molecules and upregulate the expression of inhibitory receptors such as programmed cell-death 1 (PD-1).
View Article and Find Full Text PDFBackground: Targeting epitopes derived from neo-antigens (or "neo-epitopes") represents a promising immunotherapy approach with limited off-target effects. However, most peptides predicted using MHC binding prediction algorithms do not induce a CD8 + T cell response, and there is a crucial need to refine the predictions to readily identify the best antigens that could mediate T-cell responses. Such a response requires a high enough number of epitopes bound to the target MHC.
View Article and Find Full Text PDFAdv Drug Deliv Rev
February 2019
The last decade will be remembered as the dawn of the immunotherapy era during which we have witnessed the approval by regulatory agencies of genetically engineered CAR T-cells and of checkpoint inhibitors for cancer treatment. Understandably, T-lymphocytes represent the essential player in these approaches. These cells can mediate impressive tumor regression in terminally-ill cancer patients.
View Article and Find Full Text PDFRNA-editing mechanisms, which induce nucleotide substitution in the RNA, increase transcript and protein diversities. Editing dysregulation has been shown to lead to grave outcomes, and transcriptome-wide aberrant RNA editing has been found in tumors. However, little is known about the involvement of editing in other diseases.
View Article and Find Full Text PDFRecent developments in cancer treatment are demonstrating the increasing and powerful potential of immunotherapeutic strategies. In this regard, the adoptive transfer of tumor-specific T-lymphocytes approaches can lead to tumor regression in cancer patients. More recently, the use of T-cells genetically engineered to express cancer-specific receptors such as the anti-CD19 chimeric antigen receptor (CAR) continues to show promise for the treatment of hematological malignancies.
View Article and Find Full Text PDFCancer immunotherapy has made enormous progress in offering safer and more effective treatments for the disease. Specifically, programmed death ligand 1 antibody (αPDL1), designed to perform immune checkpoint blockade (ICB), is now considered a pillar in cancer immunotherapy. However, due to the complexity and heterogeneity of tumors, as well as the diversity in patient response, ICB therapy only has a 30% success rate, at most; moreover, the efficacy of ICB can be evaluated only two months after start of treatment.
View Article and Find Full Text PDFp53 was reported to be an attractive immunotherapy target because it is mutated in approximately half of human cancers, resulting in its inactivation and often accumulation in tumor cells. Peptides derived from p53 are presented by class I MHC molecules and may act as tumor-associated epitopes which could be targeted by p53-specific T cells. Interestingly, it was recently shown that there is a lack of significant correlation between p53 expression levels in tumors and their recognition by p53-TCR transduced T cells.
View Article and Find Full Text PDFThe human genome encodes thousands of unique long non-coding RNAs (lncRNAs), many of which are emerging as critical regulators of cell fate. However, their functions as well as their transcriptional regulation are only partially understood. The E2F1 transcription factor induces both proliferation and apoptosis, and is a critical downstream target of the tumor suppressor, RB.
View Article and Find Full Text PDF