Nucleotide-binding domain and leucine-rich repeat (NLR) immune receptor genes form a major line of defense in plants, acting in both pathogen recognition and resistance machinery activation. NLRs are reported to form large gene clusters in limber pine (Pinus flexilis), but it is unknown how widespread this genomic architecture may be among the extant species of conifers (Pinophyta). We used comparative genomic analyses to assess patterns in the abundance, diversity, and genomic distribution of NLR genes.
View Article and Find Full Text PDFThe Periconia fungal genus belongs to the phylum Ascomycota, order Pleosporales, family Periconiaceae. Periconia are found in many habitats, but little is known about their ecology. Several species from this genus produce bioactive molecules.
View Article and Find Full Text PDFThe dagger nematode has a major economic impact because of its transmission of to grapevines. This vector nematode, which was introduced into Western countries from the Middle East together with the domesticated grapevine, mostly reproduces by meiotic parthenogenesis, but microsatellite multilocus genotype (MLG) analysis has revealed the occurrence of rare sexual reproduction events in field conditions. In a previous 6-year study under controlled conditions, we evaluated the durability of resistance to in accessions derived from a muscadine resistance source and reference accessions.
View Article and Find Full Text PDFMol Plant Microbe Interact
March 2021
Plants trigger appropriate defense responses, notably, through intracellular nucleotide-binding (NB) and leucine-rich repeat (LRR)-containing receptors (NLRs) that detect secreted pathogen effector proteins. In NLR resistance genes, the toll/interleukin-1 receptor (TIR)-NB-LRR proteins (TNLs) are an important subfamily, out of which approximately half the members carry a post-LRR (PL) domain of unknown role. We first investigated the requirement of the PL domain for TNL-mediated immune response by mutating the most conserved amino acids across PL domains of TNLs.
View Article and Find Full Text PDFBackground: Muscadine (Muscadinia rotundifolia) is known as a resistance source to many pests and diseases in grapevine. The genetics of its resistance to two major grapevine pests, the phylloxera D. vitifoliae and the dagger nematode X.
View Article and Find Full Text PDFBreeding for varieties carrying natural resistance (R) against plant-parasitic nematodes is a promising alternative to nematicide ban. In perennial crops, the long plant-nematode interaction increases the risk for R breaking and R durability is a real challenge. In grapevine, the nematode has a high economic impact by transmitting (GFLV) and, to delay GFLV transmission, rootstocks resistant to this vector are being selected, using in particular as an R source.
View Article and Find Full Text PDFThe NLRs or NBS-LRRs (nucleotide-binding, leucine-rich-repeat) form the largest resistance gene family in plants, with lineage-specific contingents of TNL, CNL and RNL subfamilies and a central role in resilience to stress. The origin, evolution and distribution of NLR sequences has been unclear owing in part to the variable size and diversity of the RNL subfamily and a lack of data in Gymnosperms. We developed, searched and annotated transcriptomes assemblies of seven conifers and identified a resource of 3816 expressed NLR sequences.
View Article and Find Full Text PDFThe soil-borne nematode Xiphinema index is closely linked to its main host, the grapevine, and presents a major threat to vineyards worldwide due to its ability to transmit Grapevine fanleaf virus (GFLV). The phylogeography of X. index has been studied using mitochondrial and microsatellite markers in samples from most regions of its worldwide distribution to reveal its genetic diversity.
View Article and Find Full Text PDFRoot-knot nematodes (RKN) (Meloidogyne spp.) are worldwide pests that affect a considerable number of plants, among which stone fruit (Prunus spp.) are severely attacked.
View Article and Find Full Text PDFRoot-knot nematodes (RKNs) are considerable polyphagous pests that severely challenge plants worldwide and especially perennials. The specific genetic resistance of plants mainly relies on the NBS-LRR genes that are pivotal factors for pathogens control. In spp.
View Article and Find Full Text PDFBackground: Plants develop sustainable defence responses to pathogen attacks through resistance (R) genes contributing to effector-triggered immunity (ETI). TIR-NB-LRR genes (TNL genes) constitute a major family of ETI R genes in dicots. The putative functions or roles of the TIR, NB and LRR domains of the proteins they encode (TNLs) are well documented, but TNLs also have a poorly characterised C-terminal region, the function of which is unknown in most cases.
View Article and Find Full Text PDFRoot-knot nematodes (RKNs) (Meloidogyne spp.) are highly polyphagous pests that parasitize Prunus crops in Mediterranean climates. Breeding for RKN-resistant Prunus cultivars, as an alternative to the now-banned use of nematicides, is a real challenge, because the perennial nature of these trees increases the risk of resistance breakdown.
View Article and Find Full Text PDFRoot-knot nematode (RKN) Meloidogyne species are major polyphagous pests of most crops worldwide, and cultivars with durable resistance are urgently needed because of nematicide bans. The Ma gene from the Myrobalan plum (Prunus cerasifera) confers complete-spectrum, heat-stable, and high-level resistance to RKN, which is remarkable in comparison with the Mi-1 gene from tomato (Solanum lycopersicum), the sole RKN resistance gene cloned. We report here the positional cloning and the functional validation of the Ma locus present at the heterozygous state in the P.
View Article and Find Full Text PDFThe Ma gene from Myrobalan plum is a TNL gene that confers a high-level resistance to all root-knot nematodes of major economic importance, including Meloidogyne incognita, M. javanica, M. arenaria, and M.
View Article and Find Full Text PDFResistant rootstocks offer an alternative to pesticides for the control of soil pests. In Prunus spp., resistance loci to root-knot nematodes (RKN) have been mapped and a transformation method is needed to validate candidate genes.
View Article and Find Full Text PDFGrapevine fanleaf virus (GFLV) is vectored specifically from grapevine to grapevine by the ectoparasitic nematode Xiphinema index. Limited information is available on the vector competency of X. index populations from diverse geographical origins.
View Article and Find Full Text PDFPlant-parasitic nematodes are major agricultural pests worldwide and novel approaches to control them are sorely needed. We report the draft genome sequence of the root-knot nematode Meloidogyne incognita, a biotrophic parasite of many crops, including tomato, cotton and coffee. Most of the assembled sequence of this asexually reproducing nematode, totaling 86 Mb, exists in pairs of homologous but divergent segments.
View Article and Find Full Text PDF