Identifying associations between phenotype and genotype is the fundamental basis of genetic analyses. Inspired by frequentist probability and the work of R. A.
View Article and Find Full Text PDFIdentifying associations between phenotype and genotype is the fundamental basis of genetic analyses. Inspired by frequentist probability and the work of R.A.
View Article and Find Full Text PDFSmall gene effects involved in complex/omnigenic traits remain costly to analyse using current genome-wide association studies (GWAS) because of the number of individuals required to return meaningful association(s), a.k.a.
View Article and Find Full Text PDFWe show how field- and information theory can be used to quantify the relationship between genotype and phenotype in cases where phenotype is a continuous variable. Given a sample population of phenotype measurements, from various known genotypes, we show how the ordering of phenotype data can lead to quantification of the effect of genotype. This method does not assume that the data has a Gaussian distribution, it is particularly effective at extracting weak and unusual dependencies of genotype on phenotype.
View Article and Find Full Text PDFProven as a natural barrier against viral infection, pulmonary surfactant phospholipids have a biophysical and immunological role within the respiratory system, acting against microorganisms including viruses. Enveloped viruses have, in common, an outer bilayer membrane that forms the underlying structure for viral membrane proteins to function in an optimal way to ensure infectivity. Perturbating the membrane of viruses using exogenous lipids can be envisioned as a generic way to reduce their infectivity.
View Article and Find Full Text PDFPhenanthroindolizidines, such as antofine and tylophorine, are a family of natural alkaloids isolated from different species of They are characterized by interesting biological activities, such as pronounced cytotoxicity against different human cancerous cell lines, including multidrug-resistant examples. Nonetheless, these derivatives are associated with severe neurotoxicity and loss of in vivo activity due to the highly lipophilic nature of the alkaloids. Here, we describe the development of highly polar prodrugs of antofine and tylophorine as hypoxia-targeted prodrugs.
View Article and Find Full Text PDFApproximately 75% of xenobiotics are primarily eliminated through metabolism; thus the accurate scaling of metabolic clearance is vital to successful drug development. Yet, when data is scaled from in vitro to in vivo, hepatic metabolic clearance, the primary source of metabolism, is still commonly underpredicted. Over the past decades, with biophysics used as a key component to restore aspects of the in vivo environment, several new cell culture settings have been investigated to improve hepatocyte functionalities.
View Article and Find Full Text PDFExercise-induced pulmonary haemorrhage (EIPH) occurs in horses performing high-intensity athletic activity. The application of physics principles to derive a 'physical model', which is coherent with existing physiology and cell biology data, shows that critical parameters for capillary rupture are cell-cell adhesion and cell stiffness (cytoskeleton organisation). Specifically, length of fracture in the capillary is a ratio between the energy involved in cell-cell adhesion and the stiffness of cells suggesting that if the adhesion diminishes and/or that the stiffness of cells increases EIPH is more likely to occur.
View Article and Find Full Text PDFGlobal inequalities in economic access and agriculture productivity imply that a large number of developing countries rely on working equids for transport/agriculture/mining. Therefore, the understanding of hoof conditions/shape variations affecting equids' ability to work is still a persistent concern. To bridge this gap, using a multi-scale interdisciplinary approach, we provide a bio-physical model predicting the shape of equids' hooves as a function of physical and biological parameters.
View Article and Find Full Text PDF(HP) is a facultative anaerobic bacterium. HP is a normal flora having immuno-modulating properties. This bacterium is an example of a microorganism inducing gastric cancer.
View Article and Find Full Text PDFAll pharmaceutical companies are required to assess pharmacokinetic drug-drug interactions (DDIs) of new chemical entities (NCEs) and mathematical prediction helps to select the best NCE candidate with regard to adverse effects resulting from a DDI before any costly clinical studies. Most current models assume that the liver is a homogeneous organ where the majority of the metabolism occurs. However, the circulatory system of the liver has a complex hierarchical geometry which distributes xenobiotics throughout the organ.
View Article and Find Full Text PDFDuring the last few years, the understanding of the dysregulated hydrogen ion dynamics and reversed proton gradient of cancer cells has resulted in a new and integral pH-centric paradigm in oncology, a translational model embracing from cancer etiopathogenesis to treatment. The abnormalities of intracellular alkalinization along with extracellular acidification of all types of solid tumors and leukemic cells have never been described in any other disease and now appear to be a specific hallmark of malignancy. As a consequence of this intracellular acid-base homeostatic failure, the attempt to induce cellular acidification using proton transport inhibitors and other intracellular acidifiers of different origins is becoming a new therapeutic concept and selective target of cancer treatment, both as a metabolic mediator of apoptosis and in the overcoming of multiple drug resistance (MDR).
View Article and Find Full Text PDFThe role of the Warburg effect in cancer remains to be elucidated with a resurgence in research efforts over the past decade. Why a cancer cell would prefer to use energy inefficient glycolysis, leading to an alteration of pH both inside and outside of the cell, remains to be uncovered. The development of MDR represents a major challenge in the treatment of cancer and it is explained, so far, by the over expression of drug transporters such as the well-known and archetypal P-glycoprotein (Pgp).
View Article and Find Full Text PDFBiochim Biophys Acta Biomembr
February 2017
Background: The anionic-polyelectrolyte nature of the wall of Gram-positive bacteria has long been suspected to be involved in homeostasis of essential cations and bacterial growth. A better understanding of the coupling between the biophysics and the biology of the wall is essential to understand some key features at play in ion-homeostasis in this living system.
Methods: We consider the wall as a polyelectrolyte gel and balance the long-range electrostatic repulsion within this structure against the penalty entropy required to condense cations around wall polyelectrolytes.
Despite the major progresses in biomedical research and the development of novel therapeutics and treatment strategies, cancer is still among the dominant causes of death worldwide. One of the crucial challenges in the clinical management of cancer is primary (intrinsic) and secondary (acquired) resistance to both conventional and targeted chemotherapeutics. Multiple mechanisms have been identifiedthat underlie intrinsic and acquired chemoresistance: these include impaired drug uptake, increased drug efflux, deletion of receptors, altered drug metabolism, quantitative and qualitative alterations in drug targets, increased DNA damage repair and various mechanisms of anti-apoptosis.
View Article and Find Full Text PDFJ Exp Clin Cancer Res
September 2015
The treatment of cancer presents a clinical challenge both in human and veterinary medicine. Chemotherapy protocols require the use of toxic drugs that are not always specific, do not selectively target cancerous cells thus resulting in many side effects. A recent therapeutic approach takes advantage of the altered acidity of the tumour microenvironment by using proton pump inhibitors (PPIs) to block the hydrogen transport out of the cell.
View Article and Find Full Text PDFCancer chemotherapy resistance (MDR) is the innate and/or acquired ability of cancer cells to evade the effects of chemotherapeutics and is one of the most pressing major dilemmas in cancer therapy. Chemotherapy resistance can arise due to several host or tumor-related factors. However, most current research is focused on tumor-specific factors and specifically genes that handle expression of pumps that efflux accumulated drugs inside malignantly transformed types of cells.
View Article and Find Full Text PDFCancer cells acquire an unusual glycolytic behavior relative, to a large extent, to their intracellular alkaline pH (pHi). This effect is part of the metabolic alterations found in most, if not all, cancer cells to deal with unfavorable conditions, mainly hypoxia and low nutrient supply, in order to preserve its evolutionary trajectory with the production of lactate after ten steps of glycolysis. Thus, cancer cells reprogram their cellular metabolism in a way that gives them their evolutionary and thermodynamic advantage.
View Article and Find Full Text PDFBackground: Electroporation is a method of choice to transform living cells. The ability of electroporation to transfer small or large chemicals across the lipid bilayer membrane of eukaryotic cells or Gram-negative bacteria relies on the formation of transient pores across the membrane. To exist, these pores rely on an insulator (the bilayer membrane) and the presence of a potential difference on either side of the membrane mediated by an external electric field.
View Article and Find Full Text PDFAlthough surgical treatment of nail conditions can be traced back centuries to the writings of Paul Aegineta (625-690 AC), little is known about the physical laws governing nail growth. Such a poor understanding together with the increasing number of nail salons in the high street should raise legitimate concerns regarding the different procedures applied to nails. An understanding of the physics of nail growth is therefore essential to engage with human medicine and to understand the aetiology of nail conditions.
View Article and Find Full Text PDFPurpose: CriticalSorb™, with the principal component Solutol® HS15, is a novel mucosal drug delivery system demonstrated to improve the bioavailability of selected biotherapeutics. The intention of this study is to elucidate mechanism(s) responsible for the enhancement of trans-mucosal absorption of biological drugs by Solutol® HS15.
Methods: Micelle size and CMC of Solutol® HS15 were determined in biologically relevant media.
Background: Maternal diet during pregnancy can modulate skeletal muscle development of the offspring. Previous studies in pigs have indicated that a fat supplemented diet during pregnancy can improve piglet outcome, however, this is in contrast to human studies suggesting adverse effects of saturated fats during pregnancy. This study aimed to investigate the impact of a fat supplemented (palm oil) "high fat" diet on skeletal muscle development in a porcine model.
View Article and Find Full Text PDFWith a predicted 382.4 per 100,000 people expected to suffer from some form of malignant neoplasm by 2015, and a current death toll of 1 out of 8 deaths worldwide, improving treatment and/or drug design is an essential focus of cancer research. Multi-drug resistance is the leading cause of chemotherapeutic failure, and delivery of anticancer drugs to the inside of cancerous cells is another major challenge.
View Article and Find Full Text PDFIn recent years an increasing number of publications have emphasized the growing importance of hydrogen ion dynamics in modern cancer research, from etiopathogenesis and treatment. A proton [H+]-related mechanism underlying the initiation and progression of the neoplastic process has been recently described by different research groups as a new paradigm in which all cancer cells and tissues, regardless of their origin and genetic background, have a pivotal energetic and homeostatic disturbance of their metabolism that is completely different from all normal tissues: an aberrant regulation of hydrogen ion dynamics leading to a reversal of the pH gradient in cancer cells and tissues (↑pHi/↓pHe, or "proton reversal"). Tumor cells survive their hostile microenvironment due to membrane-bound proton pumps and transporters, and their main defensive strategy is to never allow internal acidification because that could lead to their death through apoptosis.
View Article and Find Full Text PDF