Herein, we report a Csp-Csp cross-coupling process involving the merger of gold catalysis and visible light photocatalysis leading to the alkynylative cyclization of -alkynyl benzoic acids. The corresponding and previously undescribed alkynylidenephthalide products were obtained as mixtures of : isomers. The key C-C bond formation is based on the photoactivation of the oxidative addition of an alkynyliodide to a vinylgold(I) intermediate resulting from an initial 5--dig cyclization pathway, as supported by mechanistic studies including DFT calculations.
View Article and Find Full Text PDFHerein, a photoinduced method is introduced for the synthesis of highly cross-linked and uniform polymer microspheres by atom transfer radical polymerization (ATRP) at room temperature and in the absence of stabilizers or surfactants. Uniform particles are obtained at monomer concentrations as high as 10% (by volume), with polymers being exempt from contamination by residual transition metal catalysts, thereby overcoming the two major longstanding problems associated with thermally initiated ATRP-mediated precipitation polymerization. Moreover, the obtained particles have also immobilized ATRP initiators on their surface, which directly enables the controlled growth of densely grafted polymer layers with adjustable thickness and a well-defined chemical composition.
View Article and Find Full Text PDFAmine derivatives, including aniline and allylic amines, can be formed in a single-step process from benzene and an ammonia plasma in a microreactor. Different process parameters such as temperature, residence time, and plasma power were evaluated to improve the reaction yield and its selectivity toward aminated products and avoid hydrogenated or oligomerized products. In parallel, simulation studies of the process have been carried out to propose a global mechanism and gain a better understanding of the influence of the different process parameters.
View Article and Find Full Text PDFPhotosensitization of organogold intermediates is an emerging field in catalysis. In this context, an access to 2,3-disubstituted indoles from o-alkynyl aniline and iodoalkyne derivatives via a gold-catalyzed sequence under visible-light irradiation and in the absence of an exogenous photocatalyst was uncovered. A wide scope of the process is observed.
View Article and Find Full Text PDFMesoporous graphitic carbon nitride (mpg-CN) is introduced as a heterogeneous photocatalyst to perform dual photoredox- and nickel-catalyzed cross-coupling reactions between alkyl bis(catecholato)silicates as radical precursors and aryl or alkenyl bromides. The synergy between this recyclable photocatalyst and the broadly applied homogeneous nickel complex [Ni(dtbbpy)Br] gives access to C(sp)-C(sp) cross-coupling products in a sustainable fashion. The recycled mpg-CN photocatalyst was analyzed by time-resolved emission spectroscopy and EPR spectroscopy.
View Article and Find Full Text PDFOrganometallic catalysis under visible light activation is an emerging field. Activation by photosensitization or by direct light absorption of organometallic complexes can facilitate or trigger elementary steps in a catalytic cycle such as pre-catalyst reduction, oxidative addition, transmetalation and reductive elimination, as well as the ability of generating radical intermediates, widening the structural diversity offered by classical couplings. This perspective aims to highlight key examples of these light-induced or enhanced processes, with an emphasis on the underlying mechanisms involved.
View Article and Find Full Text PDFRecent developments in the use of boron, silicon, nitrogen and sulfur derivatives in single-electron transfer reactions for the generation of alkyl radicals are described. Photoredox catalyzed, electrochemistry promoted or thermally-induced oxidative and reductive processes are discussed highlighting their synthetic scope and discussing their mechanistic pathways.
View Article and Find Full Text PDFWhile the generation of aryl radicals by photoredox catalysis under reductive conditions is well documented, it has remained challenging under an oxidative pathway. Because of the easy photo-oxidation of alkyl bis-catecholato silicates, a general study of phenyl silicates bearing substituted catecholate ligands has been achieved. The newly synthesized phenyl silicates have been fully characterized, and their reactivity has been explored.
View Article and Find Full Text PDFLess than ten years of acquaintance with hypercoordinated silicon derivatives in our lab is described in this account. Martin's spirosilane derivatives open new opportunities as ligands and as agents for the activation of small molecules and bis-catecholato silicates have proven to be exquisite radical precursors in photoredox conditions for broad synthetic applications.
View Article and Find Full Text PDFThis review deals with some key synthetic developments based on the use of iron or cobalt complexes to promote radical reactivity which have been devised over the last decades. We have more particularly focused on reactions for which the impact of this chemistry has yielded greener alternatives to existing processes and also on new transformations, notably hydrogen atom transfer (HAT) triggered processes, which can be promoted through the use of metallic complexes. Preliminary synthetic developments based on the use of photoactive iron and cobalt complexes are also covered.
View Article and Find Full Text PDFThe well-established oxidative addition-reductive elimination pathway is the most followed one in transition metal-catalysed cross-coupling reactions. While readily occurring with a series of transition metals, gold(I) complexes have shown some reluctance to undergo oxidative addition unless special sets of ligands on gold(I), reagents or reaction conditions are used. Here we show that under visible-light irradiation, an iridium photocatalyst triggers-via triplet sensitization-the oxidative addition of an alkynyl iodide onto a vinylgold(I) intermediate to deliver C(sp)-C(sp) coupling products after reductive elimination.
View Article and Find Full Text PDFPrimary, secondary, and tertiary alkyl radicals formed by the photocatalyzed oxidation of organosilicates underwent efficient carbonylation with carbon monoxide (CO) to give a variety of unsymmetrical ketones. This study introduces the possibility of radical carbonylation under a photooxidative regime.
View Article and Find Full Text PDFAcetylcholinesterase (AChE), an enzyme of the serine hydrolase superfamily, is a mediator of signal transmission at cholinergic synapses by catalyzing acetylcholine cleavage into acetate and choline. This enzyme is vulnerable to covalent inhibition by organophosphate compounds (like VX). Covalent inhibition of AChE does not revert spontaneously.
View Article and Find Full Text PDFRadical chemistry has witnessed over the last decades important advances that have positioned it as a methodology of choice in synthetic chemistry. A number of great attributes such as specific reactivities, the knowledge of the kinetics of most elementary processes, the functional group tolerance, and the possibility to operate cascade sequences are clearly responsible for this craze. Nevertheless, at the end of the last century, radical chemistry appeared plagued by several hurdles to overcome such as the use of environmentally problematic mediators or the impossibility of scale up.
View Article and Find Full Text PDFMetal free photooxidation of alkyl bis(catecholato)silicates with the organic dye 1,2,3,5-tetrakis(carbazol-9-yl)-4,6-dicyano-benzene (4CzIPN) allows the smooth formation of alkyl radicals. The latter can be efficiently engaged either with radical acceptors to provide homolytic addition products or in photoredox/nickel dual catalysis reactions to obtain cross-coupling products.
View Article and Find Full Text PDFA new method for the arylative cyclization of o-alkynylphenols with aryldiazonium salts via dual photoredox/gold catalysis is described. The reaction proceeds smoothly at room temperature in the absence of base and/or additives and offers an efficient approach to benzofuran derivatives. The scope of the transformation is wide, and the limitations are discussed.
View Article and Find Full Text PDFInvestigations based on NMR spectroscopy, mass spectrometry, and DFT calculations shed light on the metallic species generated in the rhodium-catalyzed asymmetric [2+2+2] cycloaddition reaction between diynes and isocyanates with the chiral phosphate TRIP. The catalytic mixture comprising [{Rh(cod)Cl}2 ], 1,4-diphenylphosphinobutane (dppb), and Ag(S)-TRIP actually gives rise to two species, both having an effect on the stereoselectivity. One is a rhodium(I) complex in which TRIP is a weakly coordinating counterion, whereas the other is a bimetallic Rh/Ag complex in which TRIP is a strongly coordinating X-type ligand.
View Article and Find Full Text PDFEchoing the recent celebration of the fortieth anniversary of the Barton-McCombie reaction, this review aims to explore another facet of radical processes for deoxygenation of alcohols by considering SET (single electron transfer) reduction of carboxylic ester, thiocarbonate and thiocarbamate derivatives. Various protocols have been developed relying on the use of organic and organometallic SET reagents, electrochemical conditions, photoinduced electron transfer processes and visible-light photoredox catalysis. Applications to the synthesis of molecules of interest provide a glimpse into the scope of these different approaches.
View Article and Find Full Text PDFThe first enantioselective metal-catalyzed [2 + 2 + 2] cycloaddition involving a double asymmetric induction has been devised. It relies on the use of an in situ generated chiral cationic rhodium(I) catalyst with a matched chiral ligand/chiral counterion pair. Careful optimization of the catalytic system, as well as of the reaction conditions, led to atroposelective [2 + 2 + 2] pyridone cycloadducts with high ee's up to 96%.
View Article and Find Full Text PDFThis works introduces hypervalent bis-catecholato silicon compounds as versatile sources of alkyl radicals upon visible-light photocatalysis. Using Ir[(dF(CF3)ppy)2(bpy)](PF6) (dF(CF3)ppy = 2-(2,4-difluorophenyl)-5-trifluoromethylpyridine, bpy = bipyridine) as catalytic photooxidant, a series of alkyl radicals, including highly reactive primary ones can be generated and engaged in various intermolecular homolytic reactions. Based on cyclic voltammetry, Stern-Volmer studies, and supported by calculations, a mechanism involving a single-electron transfer from the silicate to the photoactivated iridium complex has been proposed.
View Article and Find Full Text PDFEnantioselective cationic Rh(I)-catalyzed [2+2+2] cycloaddition reactions between diynes and isocyanates relying on the chiral anion strategy have been devised. In the presence of [Rh(cod)Cl]2, 1,4-bis(diphenylphosphino)butane, and the silver phosphate salt Ag(S)-TRIP as the unique source of chirality, axially chiral pyridones were isolated with ees up to 82%. This approach is novel in the field of chiral anion-mediated asymmetric catalysis since atroposelective transformations have so far remained unprecedented.
View Article and Find Full Text PDFWe report a tin-free one-pot radical approach to the synthesis of N-acyl isothioureas and acylguanidines from N-acyl cyanamides. Photoactivated reduction of aromatic disulfides in the presence of Hünig's base results in hydrothiolation of the cyanamide moiety, followed by spontaneous 1,3-migration of the acyl group. Onward reaction of the isothioureas obtained with amines led to the corresponding N-acylguanidines, where the acyl group is attached to the nitrogen atom formerly at the cyano-end of the starting material.
View Article and Find Full Text PDFOnium salts have proved to be efficient sources of carbon-centered radicals. They can undergo homolytic reduction by single electron transfer (SET) and participate in subsequent synthetic transformations. This review aims to provide an overview on the behavior of onium salts including diazonium, sulfonium, selenonium, telluronium, phosphonium and iodonium cations toward various reductive methods such as radiolysis, electrolysis, photolysis or the use of SET reagents.
View Article and Find Full Text PDF