In this study, we report recent theoretical and experimental developments dealing with the axisymmetric flow surrounding non-spherically oscillating microbubbles. A wide variety of microstreaming patterns is revealed using a theoretical modeling providing exact analytical solutions of the second-order mean flows. The streaming pattern is highly dependent on the modal content of the bubble interface oscillation, including possibly spherical, translational, and nonspherical modes, as well as any combination of these modes.
View Article and Find Full Text PDFIn various domains of material processing, such as surface cleaning and surface treatment, cavitation phenomenon may become an alternative to traditional methods if this phenomenon is well understood. Due to experimental and mathematical difficulties in theoretical models, it is still a challenge to accurately measure the physical mechanism of the fluid/structure interactions. In this study, we verified the feasibility of using polyvinylidene fluoride (PVDF) sensors to quantitatively measure the under-water pressure wave generated by the collapse of a single cavitation bubble.
View Article and Find Full Text PDFWhen located near biological barriers, oscillating microbubbles may increase cell membrane permeability, allowing for drug and gene internalization. Experimental observations suggest that the temporary permeabilization of these barriers may be due to shear stress that is exerted on cell tissues by cavitation microstreaming. Cavitation microstreaming is the generation of vortex flows which arise around oscillating ultrasound microbubbles.
View Article and Find Full Text PDFThis paper is the conclusion of work done in our previous papers [A. A. Doinikov et al.
View Article and Find Full Text PDFTwo acoustic bubbles may attract or repel due to the secondary radiation force acting on them. We use here a dual-frequency levitation chamber in order to trap two oscillating microbubbles at close, fixed distance, and to perform measurements of the interaction force. We successfully compare our measurements to a commonly used theoretical model that assumes linear spherical oscillations, and disregards attenuation and multiple scattering between bubbles.
View Article and Find Full Text PDFThis paper is the continuation of work done in our previous papers [A. A. Doinikov et al.
View Article and Find Full Text PDFA potential source of subharmonic bubble emissions is revealed experimentally by high-speed imaging. When an acoustic bubble is driven at sufficiently large pressure amplitudes, energy transfer from surface to volume oscillations can lead to the triggering of subharmonic spherical oscillations. This experimental evidence is in agreement with recent theoretical modeling of nonspherical bubble dynamics accounting for nonlinear mode coupling.
View Article and Find Full Text PDFThis paper continues a study that was started in our previous paper [A. A. Doinikov et al.
View Article and Find Full Text PDFA theory is developed that allows one to model the velocity field of acoustic microstreaming produced by nonspherical oscillations of an acoustically driven gas bubble. It is assumed that some of the bubble oscillation modes are excited parametrically and hence can oscillate at frequencies different from the driving frequency. Analytical solutions are derived in terms of complex amplitudes of oscillation modes, which means that the mode amplitudes are assumed to be known and serve as input data when the velocity field of acoustic microstreaming is calculated.
View Article and Find Full Text PDFTime-resolved dynamics of nonspherical oscillations of micrometer-sized bubbles are captured and analyzed using high-speed imaging. The axisymmetry of the bubble shape is ensured with certainty for the first time from the recordings of two synchronous high-speed cameras located at 90^{∘}. The temporal dynamics of finite-amplitude nonspherical oscillations are then analyzed for various acoustic pressures above the instability threshold.
View Article and Find Full Text PDFWe report observations of strong nonlinear interactions between the spherical, translational, and shape oscillations of micrometer-size bubbles. This is achieved through high-speed recordings of single bubble dynamics driven by amplitude-modulated ultrasound. The features of mode coupling are highlighted through (i) the exponential growth of the parametrically excited mode (n=3) triggered by the spherical oscillations followed by a saturation due to energy transfer towards the translation and even modes, (ii) the excitation of modes well below their parametric pressure threshold, and (iii) clear modification of the breathing mode R(t).
View Article and Find Full Text PDF